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Abstract We investigate the formation of vector solitons in weakly birefringent
high-Q resonators. The presence of nonlinear polarization mode coupling in optical
resonators subject to a coherent optical injection allows stabilizing up to two families
of bright or dark vector dissipative solitons, depending on the dispersion properties of
the system. We use coupled Lugiato–Lefever equations to investigate the dynamical
properties of interacting laser fields confined in the Kerr optical resonators. Anoma-
lous and normal dispersion regimes are considered, and it is shown that in both cases
two branches of dissipative solitons coexist and exhibit different peak powers and
different polarization properties. In these regimes, the input–output characteristics
possess either a bistable or a tristable homogeneous response. The coexistence of
two branches of localized states is not possible without taking into account the polar-
ization degrees of freedom. The stabilization mechanism of these localized states is
attributed to a subcriticalmodulational instability in the case of anomalous dispersion
and to a front-locking mechanism in the normal dispersion regime. Their bifurcation
diagrams exhibit either a homoclinic or a heteroclinic snaking type of instability,
depending on the dispersion properties.
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1 Introduction

Dissipative structures are inherent to out-of-equilibrium systems that are subject to
mechanisms that tend to restore uniformity (a transport process such as diffusion,
dispersion, diffraction, or thermal conductivity) and which compete with nonlinear
interactions that tend to locally amplify the field intensity (chemical reactions or
matter–light interaction), while dissipation of energy competes with injection [1,
2]. These properties can be found in many real-life systems, e.g. in the fields of
chemistry [3, 4], biology [5], ecology [6–9], andnonlinear optics [10–12].Dissipative
structures can be spatially extended patterns and/or localized in time. In the first
case, the organization of matter or energy in the bulk of the material often originates
from a modulational instability (MI). Some of the most common spatial patterns
are stripes, hexagons, and honeycombs [13]. Furthermore, when the modulational
instability appears subcritically, there can exist a pinning region where isolated spots
of the pattern are embedded on a homogeneous background which are often called
dissipative solitons (DSs) [14]. Another type of dissipative solitons that can appear in
the presence of bistability, without any pattern or any specific wavelength emerging,
is due to the front-locking mechanism [15, 16]. In this case, the interaction of two
fronts, i.e. heteroclinic connections between the two stable homogeneous steady
states (HSSs), (also called continuous wave, CW solutions in optics), is responsible
for the appearance of the DSs. For both of these formation mechanisms, the two
balances between the nonlinear effect and the transport process on the one hand, and
between pumping and dissipation on the other hand, make the DSs robust structures
with an intrinsic size defined by the dynamical properties of the system only. This
leads to very interesting prospects in the field of optics for possible applications such
as information processing and optical storage [17–19].

Staying in the field of optics, considering the polarization degrees of freedom
leads to richer dynamics. In free propagation, i.e. in the absence of an optical res-
onator, it has been shown that new modulational instabilities can appear, and with
them, symmetry breaking, domain wall vector solitons, rotating vector soliton bound
states [20], dark–bright vector solitons [21] and vector flat-top solitons [22]. In the
presence of a Kerr resonator, the third-order dependency of the polarization on the
electric field implies that the medium becomes birefringent. In particular, when the
polarization state of the DSs evolves in time while the group velocities of the two
different polarization components are locked, they are called group-velocity-locked
vector solitons (GVLVSs) [23, 24]. Another common case corresponds to the locking
of the polarization states of the two components, called polarization-locked vector
solitons (PLVSs) [25, 26]. Other situations exist, such as vector solitons with locked
and precessing states of polarization [27] or group-velocity-locked vector soliton
molecules [28].

Most of the above-mentioned physical systems are spatially extended, where DSs
correspond to spots in the two- or three-dimensional bulk of the material. However,
in the field of nonlinear optics, they can be obtained in small area waveguides where
diffraction can be neglected, so that the transport phenomenon role is carried out
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by the chromatic dispersion of light. In this case, the DSs are called temporal DSs
and present themselves as pulses propagating indefinitely in the cavity without any
spreading of their temporal profile. This makes the temporal DSs very attractive for
information processing as they could serve as bits in an all-optical buffer [29–31].
Another property of temporal DSs gathering ever more increasing interest is the
optical spectrum built over many roundtrips in the cavity, which is made of equally
spaced lines, also called optical frequency combs, allowing a myriad of applications
in spectroscopy, metrology, and photonics [32–35]. When the generation of these
optical frequency combs is due to the nonlinearity of a Kerr medium, they are called
Kerr combs. In particular, a lot of this interest has been focused on high-Q resonators
which have seen rapid development in recent years. This is partly due to their ability
to host the Kerr combs in small devices with low pump power and various other
important properties such as on-chip integration [36], octave-spanning spectra [37],
or tuning of the central frequency [38].

In this chapter, we investigate numerically the formation of vector temporal soli-
tonswith different polarization states and intensities in optical resonators for different
cases. This approach is valid for both all-fiber macroscopic resonators and micro-
scopic resonators. First, we consider the anomalous dispersion regime in which we
investigate bright DSs generated by the patterning phenomenon of modulational
instability. We pursue with the normal dispersion regime where we place ourselves
far from anyMI, with low detunings and bistability between stable CWsolutions, and
consider dark DSs generated by the front-locking mechanism. In the case of higher
detunings, we show that the polarization degrees of freedom lead to the appearance
of tristability of stable CWs, bringing a high degree of multistability of DSs with
very different polarization states.

2 The Vectorial Lugiato–Lefever Model

In 1987, L. A. Lugiato and R. Lefever theoretically evidenced the possibility of a
spontaneous emergence of spatial stationary dissipative structures in the transverse
plane of a laser beam circulating in a passive optical resonator filled with a nonlinear
Kerr medium [10]. They provided a model allowing for the description of the spatio-
temporal evolution of the electric field envelope E in such a system and that is since
known as the Lugiato–Lefever equation (LLE) :

∂E

∂t
= Ei − (1 + iθ)E + i |E |2E + i

∂2E

∂x2
. (1)

Here, t is the normalized time, x is the normalized coordinate along the cavity, and θ
is the frequency detuning of the injected field to the cavity resonance frequency. The
self-organization of the electric field within this out-of-equilibrium system and the
robustness of the resulting structures are explained by the appropriate balances of,
on the one hand, diffraction with nonlinearity and, on the other hand, of the internal
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losses with the pump Ei . This breakthrough in the field of nonlinear optics aroused a
great interest among the scientific community, and the Lugiato–Lefever (LL) model
was (and still is) widely used and developed.
Our purpose here is to adapt the LLE in order to take into account the polarization
degrees of freedom of the electric field propagating inside a passive optical res-
onator. Moreover, when the transverse dimensions can be neglected (e.g. by using
waveguides), so can the diffraction. The transport phenomenon playing its role is the
chromatic dispersion and it is possible to find stable structures that are now localized
in time instead of space. Such temporal dissipative solitons form a pulse train in
the output branch of the resonator whose power spectral distribution is made out of
evenly spaced teeth, forming so-called optical frequency combs. Adding a polariza-
tion degree of freedom will result in a vectorial LL model made out of two coupled
LLEs, one for each polarization component of the electric field. Let us first briefly
recall basic notions about polarization and how to characterize it. The reader familiar
with the Stokes parameters and the polarization ellipse can skip the next section.
Characterizing the Polarization
In this section, we recall the fundamental notions and quantities necessary to study
light polarization following the presentation made in [39]. From a classical point
of view, the propagation of light corresponds to the spatio-temporal evolution of
an electromagnetic wave constituted of an electric and a magnetic field oscillating
perpendicularly relative to one another and both lying in the plane normal to the
direction of propagation. Transverse waves such as electromagnetic waves possess a
fundamental property called polarization describing the oscillatory behavior of the
electric field vector in the transverse plane. Polarization of incoming light can be
constantly evolving with time in a random fashion. Such light is said to be unpo-
larized. In that case, during the spatio-temporal evolution of the electric field, the
successive orientations of the vector are uncorrelated and no dominant polarization
state emerges. However, polarization is a central concept in nonlinear optics and laser
physics since lasers generally produce quasi-monochromatic light which is always
at least partially polarized. Different quantities can be used to characterize the polar-
ization properties of an electric field E based on its components in the transverse
plane (Ex , Ey). Among them, widespread are the Stokes parameters, defined as

S =

⎡
⎢⎢⎣
S0
S1
S2
S3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

|Ex |2 + |Ey|2
|Ex |2 − |Ey|2
E∗
x Ey + Ex E∗

y

i(Ex E∗
y − E∗

x Ey)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Ph + Pv

Ph − Pv

Pπ/4 − P3π/4

Pl − Pr

⎤
⎥⎥⎦ ∈ R

4, (2)

where ∗ stands for the complex conjugate.

While S0 is the total intensity, S1 and S2 give information about the fluxes of light
polarized linearly along the horizontal x-direction (Ph) and the vertical y-direction
(Pv) and along the directions at angles 45◦ (Pπ/4) and 135◦ (P3π/4) with respect to
the x-direction, respectively. The sign of S1 and S2 indicates which flux overcomes
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Fig. 1 Schematic representation of the Stokes parameters. The oscillations of the electric field in
the transverse plane along the horizontal x-direction and the vertical y-direction are captured by
S1 while S2 gives informations about the directions at angles π/4 and 3π/4 with respect to the
horizontal direction. Finally, S3 quantifies the amount of right (S3 < 0) or left (S3 > 0) circularly
polarized light

the other while their magnitude quantifies that excess. Finally, the circular polariza-
tion is described by parameter S3, whose sign tells us if it is left-handed (S3 > 0) or
right-handed (S3 < 0). Considering a light beam propagating in the z-direction (nor-
mal to the page), Fig. 1 gives a schematic representation of the Stokes parameters,
sometimes seen as the components of a quantity S, the Stokes (pseudo-)vector (as it
does not transform as a vector), and fully describing the polarization state of light.
Note that we generally work with the normalized quantities si = Si/S0 ∈ [−1, 1].

Pure polarization states as presented in Fig. 1 are given by s1 = [1,±1, 0, 0]T ,
s2 = [1, 0,±1, 0]T , and s3 = [1, 0, 0,±1]T . However, in general, the tip of the elec-
tric field vector draws an ellipse in the course of its evolution, combining non-zero
linear and circular components of polarization.

Based on the Stokes parameters and in order to complete our characterization of
the polarization state of the output light, we can define several other quantities. The
degree of polarization (DoP) takes a value between 0 and 1 and is the ratio of the
total polarized flux and the total flux:

DoP(S) =
√
s21 + s22 + s23 . (3)

Unpolarized light exhibits a zero DoP whereas light in a single state of polarization
is fully polarized and the corresponding DoP is equal to 1. That general feature can
be refined into its constitutive parts, namely the degree of linear polarization (DoLP)
and the degree of circular polarization (DoCP), given by

DoLP(S) =
√
s21 + s22 , and DoCP(S) = s3. (4)

DoLP varies from 0 (for circularly polarized or unpolarized light) to 1 (for linearly
polarized light) while DoCP goes from -1 (for left circular polarization) to 1 (for
right circular polarization). Light that is either unpolarized or linearly polarized has
a DoCP of 0.

In the general case, we can define the ellipticity ε of the polarization ellipse
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Fig. 2 Polarization ellipse in the (x, y)-transverse plane for light propagating in the z-direction.
The major and minor axes of the ellipse are denoted by a and b, respectively

ε = |s3|√
s21 + s22 + s23 +

√
s21 + s22

= b

a
, (5)

which is the ratio of the minor axis to the major axis of the ellipse describing the
trajectory followed by the tip of the electric field vector (see Fig. 2).

Vectorial LL model
We consider the propagation of light inside a Kerr resonator submitted to coherent
optical pumping (see Fig. 3). The ring cavity is filled with a birefringent medium, and
its slow and fast axes are oriented along the x- and y-directions, respectively. This
model is suitable to describe macroscopic fiber cavities as well as microscopic res-
onators. We take into account the polarization degrees of freedom and we neglect the
phenomenon of diffraction so that the nonlinearity of the medium balances with the
chromatic dispersion only, and the field only varies along the longitudinal direction.
The Brillouin and Raman scatterings are not considered so that, over one roundtrip,
the linear polarization components Êx,y(z, τ ) of the slowly varying electric field
envelope obey the nonlinear Schrödinger equations that take the general forms [40]:

∂ Êx

∂z
+ β̂1,x

∂ Êx

∂τ
+ i β̂2,x

∂2 Êx

∂τ 2
+ αi,x

2
Êx =

iγ

(
|Êx |2 + 2|Êy|2

3

)
Êx + iγ

3
Ê∗
x Ê

2
ye

−2i�β̂z, (6a)

∂ Êy

∂z
+ β̂1,y

∂ Êy

∂τ
+ i β̂2,y

∂2 Êy

∂τ 2
+ αi,y

2
Êy =

iγ

(
|Êy|2 + 2|Êx |2

3

)
Êy + iγ

3
Ê∗
y Ê

2
x e

2i�β̂z, (6b)

where ∗ stands for the complex conjugate. The spatial variable z represents the
longitudinal coordinate while the temporal variable τ = t − β̂1z is expressed in a
reference frame moving at the mean group-velocity : β̂1 = |β̂1,x + β̂1,y |/2 = v−1

g .

Indeed, the first-order dispersion coefficient β̂1, j represents the inverse speed of
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BS
Ei Output

Ei

Output

Fig. 3 (Left) Schematics of a typical optical macroscopic fiber resonator pumped with a linearly
polarized field coherently coupled to the intracavity field at the beam splitter (BS). (Right) Schemat-
ics of a microscopic toroidal resonator or microring cavity. We will see in the next sections that the
electric field adopts a elliptical polarization along its path in the cavity. Reproduced from [41]

the envelope of the electric field component Ê j in the material. The second-order
dispersion coefficient β̂2, j characterizes the group-velocity dispersion of component
Ê j and we neglect higher order terms in the expansion of the propagation constant
around the carrier frequency ω0:

β̂ j (ω) =
∞∑
k=0

β̂k, j

k! (ω − ω0)
k, β̂k, j = dk β̂ j

dωk

∣∣∣∣∣
ω0

. (7)

The zeroth-order coefficient �β̂ = β̂0,x − β̂0,y = 2π|nx − ny|/λ represents the dif-
ference between wavenumbers corresponding to the polarization components and
therefore characterizes the birefringence of the material. The parameters αi, j stands
for the internal linear losses in each direction of polarization. Finally, the nonlinear
coefficient γ accounts for the Kerr nonlinearity.

In order to consider the superposition of the intracavity field with the linearly
polarized input beam, we impose the following boundary conditions coupling the
fields at roundtrips m and m + 1:

Êm+1
x,y (z = 0, τ ) = √

T Êix,iy + √
Re−iδx,y Êm

x,y(L , τ ), (8)

where T and R are, respectively, the intensity transmission and reflection coefficients
at the beam splitter, Êi x,iy are the polarization components of the source field, and
δx,y are the phase differences between the injected field and the circulating field
after having traveled a cavity length L . To derive the mean-field Lugiato–Lefever
model, we integrate the field equations (6) over one roundtrip and apply the boundary
conditions (8). Under the assumptions of high-finesse (T � 1), and of detuning and
coupling coefficient of order 1, we introduce the continuous limit by t = mtR and

∂ Êx,y(t, τ )

∂t
= Êm+1

x,y (z = 0, τ ) − Êm
x,y(z = 0, τ )

tR
, (9)
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with tR the cavity roundtrip time and t a slow time variable describing the field
evolution from one roundtrip to another. We can now write the vectorial Lugiato–
Lefever model as two coupled evolution equations for the polarization components
of the renormalized electric field envelopes Ex,y [42, 43],

∂Ex

∂t
= Ei cos(ψ) − (1 + iθx )Ex + i

(
|Ex |2 + 2

3
|Ey |2

)
Ex + �β1

∂Ex

∂τ
+ iη

∂2Ex

∂τ2
, (10a)

∂Ey

∂t
= Ei sin(ψ) − (1 + iθy)Ey + i

(
|Ey |2 + 2

3
|Ex |2

)
Ey − �β1

∂Ey

∂τ
+ iη

∂2Ey

∂τ2
. (10b)

It has to be noted that, in what follows, the fast time τ will be interpreted as a spatial
variable. Indeed, knowing the group-velocity of light within the cavity of fixed length
L , we can identify a position corresponding to each time τ . Consequently, for a given
roundtrip (meaning that we fix the value of t), the observation of E(t, τ ) over the
interval going from τ = 0 to τ = tR = L n

c precisely gives the evolution of the electric
field along the cavity for the selected round trip, as τ is expressed in a reference frame
moving at the group-velocity of light in the cavity. The following renormalization
factors were used in order to obtain the non-dimensional system of equations (10) :

Ex,y =
√

γL

α
Êx,y, Eix,iy =

√
γLT

α3
Êi x,iy, (11)

t = α

tR
t ′, τ =

√
2α

|β̂2|L
τ ′, (12)

θx,y = 1

α
δx,y, β1,x,y =

√
2αL

|β̂2|
β̂1,x,y . (13)

We consider that the input field Ei is linearly polarized in a direction oriented with
an angle ψ with respect to the slow axis and that the total losses α = (αi L + T )/2
are the same for each direction of polarization and renormalized to 1. The frequency
detunings between the injected field components and the closest corresponding cav-
ity resonance are given by θx,y and we placed ourselves in a reference frame moving
at a speed being the mean group-velocity between the polarization components,
hence �β1 = (β1,x − β1,y)/2. The parameter �β1 is known as the group-velocity
mismatch (GVM) parameter; however, in what follows, wewill assume that noGVM
affects the propagation of light inside the cavity which is a reasonable approximation
for practical applications [44]. The group-velocity dispersion (GVD) coefficient is
taken to be the same in both directions. In other words, it is here assumed that the
second-order dispersion acts identically on both components of polarization of the
electric field. Parameter η = ±1 stands for the sign of theGVD. Finally, the factor 2/3
is the cross-phase modulation (XPM) coefficient through which occurs the coupling
between the field components. We complete our discussion of the model by giving
some physical values of the parameters that one can encounter in physical applica-
tions [29] and [45]. While using silica fibers for optical transmission of information,
it is suitable to use a carrierwave ofwavelength in the vicinity ofλ = 1.5µm. Indeed,
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in this spectral region, internal losses due to absorption and scattering can go down
to αi ≈ 0.2 dB/km. In this conditions, a typical value for the group-velocity disper-
sion coefficient is β̂2 ≈ −20 ps2/km. The nonlinear coefficient γ characterizes the
nonlinear response of the material to the presence of the electric field and is of the
order of 2 (W km)−1. A typical value for the refractive index for silica optical fibers
is n ≈ 1.467. When considering optical frequency combs, a fundamental property is
the free spectral range (FSR), corresponding to the constant spacing between spectral
lines. This FSR is equal to the repetition rate of the propagating pulse in the cavity,
1

tR
.

Linear stability analysis

The homogeneous steady state solutions (HSSs) of system (10) satisfy the conditions
∂Es

x,y/∂τ = ∂Es
x,y/∂t = 0 and therefore obey the equations

Ii x,iy =
[
1 +

(
θx,y − Ix,y − 2

3
Iy,x

)2
]
Ix,y, (14)

with Ii x,iy = E2
i x,iy and Ix,y = |Es

x,y |2. For fixed values of the control parameters
that are the frequency detunings θx,y and the injected field intensities Eix,iy , Eq.
(14) possesses up to five physical solutions. A linear stability analysis of the HSSs
brings insights concerning the dynamics of the system as a function of the control
parameters and allows one to identify regimes that are interesting to investigate. In
the case of zero GVM (�β1 = 0), we will perform it by adding a small perturbation
to the HSSs (Ex,y = Es

x,y + E ′
x,y) and splitting the fields components into their real

and imaginary parts. To the first order in the perturbations E ′
x,y , system (10) rewrites

∂E ′
x,r

∂t
= −E ′

x,r + θx E
′
x,i − 2

[
Es
x,r E

′
x,r + Es

x,i E
′
x,i + 2

3

(
Es
y,r E

′
y,r + Es

y,i E
′
y,i

)]
Es
x,i

−
(

|Es
x |2 + 2|Es

y |2
3

)
E ′
x,i − β2

∂2E ′
x,i

∂τ 2
, (15a)

∂E ′
x,i

∂t
= −E ′

x,i − θx E
′
x,r + 2

[
Es
x,r E

′
x,r + Es

x,i E
′
x,i + 2

3

(
Es
y,r E

′
y,r + Es

y,i E
′
y,i

)]
Es
x,r

+
(

|Es
x |2 + 2|Es

y |2
3

)
E ′
x,r + β2

∂2E ′
x,r

∂τ 2
, (15b)

∂E ′
y,r

∂t
= −E ′

y,r + θy E
′
y,i − 2

[
Es
y,r E

′
y,r + Es

y,i E
′
y,i + 2

3

(
Es
x,r E

′
x,r + Es

x,i E
′
x,i

)]
Es
y,i

−
(

|Es
y |2 + 2|Es

x |2
3

)
E ′
y,i − β2

∂2E ′
y,i

∂τ 2
, (15c)
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∂E ′
y,i

∂t
= −E ′

y,i − θy E
′
y,r + 2

[
Es
y,r E

′
y,r + Es

y,i E
′
y,i + 2

3

(
Es
x,r E

′
x,r + Es

x,i E
′
x,i

)]
Es
y,r

+
(

|Es
y |2 + 2|Es

x |2
3

)
E ′
y,r + β2

∂2E ′
y,r

∂τ 2
, (15d)

where subscripts r and i denote real and imaginary part, respectively.
We now specify the shape of the perturbations E′ that are taken under the form of
normal modes of constant amplitude Ẽ and of frequency and wavenumber λ,ω ∈ C,
respectively, E′ = Ẽ exp(λt + iωτ ), with

E′ =

⎡
⎢⎢⎣

E ′
x,r

E ′
x,i

E ′
y,r

E ′
y,i

⎤
⎥⎥⎦ , and Ẽ =

⎡
⎢⎢⎣

Ẽx,r

Ẽx,i

Ẽ y,r

Ẽy,i

⎤
⎥⎥⎦ . (16)

In order to investigate the temporal stability of the homogeneous states with respect
to such perturbations, we substitute E′ in Eq. (15) and set the spatial derivatives to
zero. This leads us to the following eigenvalue problem:

MTẼ = λẼ (17)

with

MT =

⎡
⎢⎢⎣

−1 − 2Es
x,r E

s
x,i A1 − 4

3 E
s
y,r E

s
x,i − 4

3 E
s
y,i E

s
x,i

A2 −1 + 2Es
x,r E

s
x,i

4
3 E

s
y,r E

s
x,r

4
3 E

s
y,i E

s
x,r

− 4
3 E

s
x,r E

s
y,i − 4

3 E
s
x,i E

s
y,i −1 − 2Es

y,r E
s
y,i A3

4
3 E

s
x,r E

s
y,r

4
3 E

s
x,i E

s
y,r A4 −1 + 2Es

y,r E
s
y,i

⎤
⎥⎥⎦ ,

(18)
the temporal evolution matrix of the perturbation, and

A1 = θx − 2
(
Es
x,i

)2 −
(

|Es
x |2 + 2|Es

y |2
3

)
,

A2 = −θx + 2
(
Es
x,r

)2 +
(

|Es
x |2 + 2|Es

y|2
3

)
,

A3 = θy − 2
(
Es
y,i

)2 −
(

|Es
y |2 + 2|Es

x |2
3

)
,

A4 = −θy + 2
(
Es
y,r

)2 +
(

|Es
y |2 + 2|Es

x |2
3

)
.

For each value of the injection amplitude Ei , there are either one, three, or five
physical homogeneous steady state solutions to the system (17) for each of which
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correspond four eigenvalues of MT that characterize the temporal evolution of the
perturbation.More precisely, the real partλr of the temporal eigenvalue informs about
the growth rate of the perturbation. If all λr are negative, the perturbation will die out
and the system will fall back on the base state Es , which is subsequently qualified as
stable. If, on the contrary, the dominant eigenvalue has a positive real part, E′ will
grow with time, driving the perturbed state E away from the base state Es . In that
case, the base state is said to be unstable with respect to perturbations of the form
E′. A zero dominant eigenvalue prevents us to conclude from the restricted linear
stability analysis. The imaginary part λi of the temporal eigenvalue characterizes
modulations and periodic behavior in the temporal evolution of the perturbation.

Considering the stable stationary states, it is worth looking at the spatial evolution
of the perturbation or, in other words, their spatial stability. Back to system (15), we
now set the temporal derivative to zero, inject the perturbation (16), and isolate the
spatially dependent terms. This results in the eigenvalue problem

MSẼ = �Ẽ (19)

with � = ω2,

MS = − 1

β2

⎡
⎢⎢⎣
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⎤
⎥⎥⎦ ,

(20)
the spatial evolution matrix of the perturbation, and

B1 = θx − 2(Es
x,r )

2 −
(

|Es
x |2 + 2|Es

y |2
3

)
,

B2 = θx − 2(Es
x,i )

2 −
(

|Es
x |2 + 2|Es

y |2
3

)
,

B3 = θy − 2(Es
y,r )

2 −
(

|Es
y |2 + 2|Es

x |2
3

)
,

B4 = θy − 2(Es
y,i )

2 −
(

|Es
y |2 + 2|Es

x |2
3

)
.

Regarding the spatial stability, we focus on the presence of amodulational instability
which is characterized by a transition in the spectrum of � from a pair of complex
conjugated eigenvalues to real eigenvalues:

�init = {a1 ± ia2; b1 ± ib2} → �fin = {a3; a4; b3 ± ib4}, (21)
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with a1, a2, a3, a4, b1, b2, b3, b4 ∈ R
+∗ .

Indeed, for stationary states, if the dynamics of the perturbation (16) is characterized
by a real wavenumber ω ∈ R, then it evolves as E′ = Ẽ exp(ω̃τ ) where ω̃ = iω
is purely imaginary. Consequently, the perturbation leads to a modulation of the
amplitude of the electric field along the cavity, without global growth or decay, and
results in the formation of a periodic pattern (sometimes called wavetrain) filling
the cavity. In the fields of nonlinear optics and laser physics, the transition (21) is
referred to as modulational instability.

3 Modulational Instability in the Case of Anomalous
Dispersion

In this section, we investigate how the polarization of light affects the usual solutions
found in the LL model in the case where the second-order dispersion is anomalous,
i.e. η = +1. We begin with a standard linear stability analysis of the continuous
wave solutions in this case, with respect to a perturbation of the form exp(iωτ +
λt). We fix the detuning along the fast axis θy , while θx and Ei are the control
parameters. The resulting stability map in the parameter space is shown in Fig. 4.
For some representative values of θx (cuts (a),(b), and (c)), the total intracavity field
intensity S0 = |Ex |2 + |Ey|2 is plotted as a function of the fast time τ in Fig. 5.
Along these cuts, curves with positive slope (∂S0/∂Ei > 0) are stable, while curves
with negative slope (∂S0/∂Ei < 0) are unstable. For very low values of θx , moving
along the cut (a), (corresponding to the input–output characteristic curve Fig. 5a), we
encounter the threshold from which the single stable CW state (region I) becomes a
single modulationally unstable state (region II). For higher injection values, we enter
the hysteresis loop (region IV) meaning that a domain of bistability between two
modulationally unstable states appears. We can continue past the hysteresis loop,
where only the upper modulationally unstable state is left.
As the detuning θx is increased (going upwards on themap), we can see that the value
of the Ei threshold of the bistability between MI states (the border between regions
II and IV) monotonically decreases, while the threshold of the MI bifurcation (the
border between regions I and II) decreases before increasing again, at which point it
becomes superseded by the birth of a new bistability, between one stable CW state
and one modulationally unstable state (region III). Two distinct bistabilities exist for
different ranges of the injection power at this point, as shown in the input–output
characteristics Fig. 5b. The threshold corresponding to the disappearance of region III
and the one corresponding to the appearance of region IV start converging for higher
values of θx , until both different types of bistabilities coincide which leads to the red
region V where one CW state coexists with two different modulationally unstable
states. The cut (c) illustrates this region, with the corresponding CW intensity curve
shown in Fig. 5c.
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Fig. 4 Stability map of the CW solutions in the parameter plane (Ei , θx ). Region I corresponds to
parameters for which the system only hosts one single stable steady state. Region II corresponds
to parameters for which the system only hosts one single modulationally unstable state. Region III
corresponds to parameters for which the system hosts bistability between one stable steady state and
one modulationally unstable state. Region IV corresponds to parameters for which the system hosts
bistability between two modulationally unstable states. Region V corresponds to parameters for
which the system hosts tristability between one stable steady state and two modulationally unstable
states
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Fig. 5 Steady states corresponding to the cuts taken along the dashed lines in Fig. 4, with the total
intensity S0 given as a function of the injection for fixed values of the x detuning (a) θx = 1, (b)
θx = 2.25, and (c) θx = 3. Other parameters are the same as in Fig. 4. Full lines correspond to stable
states, dashed lines correspond to unstable states, and dotted lines correspond to modulationally
unstable states
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Fig. 6 Profiles of the
non-normalized Stokes
parameters S0, S1, S2, and S3
as a function of the fast time
τ for two coexisting bright
DSs with different
properties. Parameters are
Ei = 2.54, θx =
2.75, and θy = 4.3.
Reproduced from [46]
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The bistability between a stable CW state and a subcritically arising MI pattern is
a key ingredient to the generation of DSs [11]. This coexistence leads to a range of
the control parameter (where DSs can be stabilized) called the pinning range. Thanks
to the polarization properties of our system, two different MI patterns exist, and in
particular two different MI patterns can coexist with a stable CW state in the red
areas of Fig. 4, meaning that it should be possible to generate two different types of
DSs in this cavity for overlapping values of the two pinning ranges associated with
each type of DS. This is shown in Fig. 6 with the profiles of two different bright
DSs as a function of the fast time τ , obtained by direct numerical simulation of
Eq. (10) with periodic boundary conditions. We show their total intensity S0, and we
characterize their polarization properties through the other non-normalized Stokes
parameters S1, S2, and S3, as defined in Sect. 2. S0 is the total intensity of light. S1
is the component of light that is linearly polarized along the axes x and y. S2 also
corresponds to light polarized linearly, but diagonally at 45◦ with respect to the x- and
y-axes. S3 is the circular component of the light polarization. The two DSs obtained
in the same physical system clearly exhibit different intensities, with the brighter
pulse on the left of the profile, since it has a higher peak power on the S0 profile.
The brighter DS is labeled A, while the darker one is labeled B. Their polarization
properties are also quite different. The A-type DS has a negative S1, representing
a component of the polarization aligned with the y-axis. Its positive S2 represents
a component aligned at 45◦ with the x-axis, and finally, the negative S3 indicates
a right-handed circular component. The B-type DS has a positive S1 (component
aligned with the x-axis), negative S2 (component aligned at 45◦C with the x-axis),
and negative S3 (right-handed circular component). The background exhibits a very
small positive S2, a moderate positive S3, and a very small negative S3, so that its
polarization is mostly aligned at 45◦ with the x-axis, showing only a very slight
ellipticity.

It is well known that DSs generated by subcritical modulational instabilities
exhibit bifurcation diagrams in the form of homoclinic snaking, emerging from the
modulational instability bifurcation in the input–output characteristic curve [47]. We
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Fig. 7 (a) Profile of an
A-type DS and (b) Profile of
a B-type DS for fixed
parameters of
Ei = 2.54, θx = 2.75, and
θy = 4.3. (c) Bifurcation
diagram showing the
L2-norm N0 as a function of
injected field amplitude Ei .
Dashed (full) lines are
unstable (stable) solutions.
Reproduced from [46]
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verify how this behavior changes due to the polarization by performing a numerical
continuation in the parameter space with a predictor–corrector method initiated by a
numerical simulation profile, both using periodic boundary conditions. The detuning
parameters are all fixed, while the amplitude of the injection is varied. The results are
shown in Fig. 7(c), where the normalized L2-norm N0 = ∫

(S0 − S̃0)/L dτ is shown
as a function of Ei . S̃0 corresponds to the CW intensity, so that the contribution of
the background is removed from the norm. As usual for a homoclinic snaking, an
unstable branch emerges from the MI bifurcation of the HSS, then reaches a turning
point where it becomes stable, which corresponds to the B-type DS. The DS then
grows for increasing injection amplitude, until it reaches a saddle-node bifurcation
where the solution becomes unstable. Then, the unstable branch goes through another
turning point where it becomes the stable A-type DS. There is only a finite range
of parameters where the two types of DSs coexist, between the values Ei1 and Ei2.
The profiles of the two coexisting solitons, types A and B, are shown in Fig. 7a,
b, respectively, for fixed parameters of Ei = 2.54, θx = 2.75, and θy = 4.3. Homo-
clinic snaking bifurcation diagrams usually present themselves in the form of two
branches oscillating across the pinning range, one corresponding to an even number
of identical peaks, and the other one corresponding to an odd number of identical
peaks. These two branches continue until the DSs entirely fill up the cavity, and
they connect back to the patterned state. The system is then highly multistable, as
these solutions all coexist in the pinning range. In our case, the behavior is more com-
plex, as the system can host different types of vector DSs. The numerical simulations
shown in Fig. 8 illustrate what happens in this case. As usual, even or odd numbers of
DSs hosted in the intracavity field each correspond to a homoclinic snaking branch.
For the regions where both pinning ranges coexist, the main branches divide into
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Fig. 8 Evolution of the
L2-norm N as a function of
injected field amplitude Ei
for numerical simulations
taken with a step of 0.001 for
Ei . Reproduced from [46]
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sub-branches for the different combinations of A-type and B-type DSs (see insets).
In this figure, numerical simulations allow to draw the stable branches only.

4 Front-Locking in the Case of Normal Dispersion

In this section, we will be operating in the normal dispersion regime, i.e. η = −1, as
this will allow us to avoid MI and focus on CW solutions only. Fronts, sometimes
also called switching waves, are heteroclinic connections between different CWs.
Their dynamics, including the generation of dark DSs, has been studied in the scalar
case [48], without taking into account the polarization of light.

We start with the linear stability analysis of the CWs. Figure9(a) shows the param-
eter space (θx , Ei ), with a region of bistability between two stable CW states in blue,
whilewhite regions correspond tomonostability. Figure9(b) shows the bistable curve
corresponding to a section of the map for a fixed value of θx . The system can host
a mixed state, called front, connecting these two stable CWs as shown in Fig. 9(c).
These fronts are generally not stationary. Depending on the value of the pump, one
of the states will invade the other. For low values of Ei , the front will move toward
regions where S0 is higher, meaning that the CW corresponding to the lowest total
intensity will invade the system (left panel). For high values of Ei , the front moves
in the opposite direction and the CW corresponding to the highest total intensity will
invade the system (right panel). There exists a point in-between, called the Maxwell
point, where the front is stationary as both states are equally stable so that they will
not invade each other.
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Fig. 9 (a) Stability map in the θx -Ei plane, with θy = 1.95. The white (blue) region indicates
monostability (bistability). (b) Bistable curve obtained for θx = 1.90 and θy = 1.95. Stable (unsta-
ble) CW states are denoted by solid (dashed) lines. (c) Front propagation to the right, below the
Maxwell point (left panel: Ei = 1.462), at the Maxwell point (middle panel: Ei = 1.46652), and
above the Maxwell point (right panel: Ei = 1.471). The boundary conditions are fixed to the CW
values. Reproduced from [49]

We can notice that the fronts possess oscillatory tails on the bottom of their lower
branch. This is an essential ingredient for the formation of DSs, as it is through
these tails that the interaction between fronts is mediated. When the oscillations are
absent, and the front is only exponentially decaying, there is no interaction between
fronts so that it is impossible to stabilize the DSs [50–52]. The oscillatory tails
however allow for an oscillatory potential of interaction with positive and repulsive
interactions, depending on the relative positions of the fronts, and with equilibrium
positions where those attractive and repulsive interactions are perfectly balanced. A
numerical simulation with periodic boundary conditions of two fronts converging
toward each other is summarized in the space–time map at the top of Fig. 10. In this
case, the amplitude of the injected light is higher than the Maxwell point, so that the
upper state tries to invade the system. The two well-separated fronts (Fig. 10(a)) then
reach an equilibrium position as shown in Fig. 10(b), meaning that the repulsion of
the fronts counterbalances their attraction as well as the front motion, and the DS is
formed. In the casewhere the amplitude of the injected light is lower than theMaxwell
point, the two fronts should start close enough so that the repulsive interaction will
beat the invading motion and move them toward their equilibrium position. In our
case, only the lower part of the fronts exhibit such oscillatory tails, so that only dark
DSs will be formed. Two different dark DSs can be formed depending on the exact
initial conditions, Fig. 10(b) or Fig. 10(c). The latter is the simplest solution, with a
simple soliton consisting of only a dip in the total light intensity, while the first one
is another more complex solution, with a single bump at the bottom of the profile.
These two solutions thus can coexist for the same values of the parameters. They also
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Fig. 10 Two fronts interact in an attractive way, which leads to the formation of vectorial dark
dissipative solitons with the total intensity in the τ -t map (top panel). (a, b) Cross-sections along
the dashed lines indicated in the τ -t map. (c) stable single dip DVDS. Numerical simulations
of Eq.10 are obtained for the parameters Ei = 1.4675, θx = 1.90, and θy = 1.95. Reproduced
from [49]

Fig. 11 Optical frequency combs corresponding to the two coexisting profiles shown in Fig. 10.
Parameters are Ei = 1.46655, θx = 1.90, and θy = 1.95. Reproduced from [49]

have similar spectral properties, as the spectral contents of DSs are optical frequency
combs shown in Fig. 11. The simplest DS shows an envelope in the shape of a sech2

curve [34], while the solution from Fig. 10b shows additional bumps at each side
of the envelope of the comb. The two combs share the same FSR, as this is only
determined by the repetition rate which is the same for all of our DSs, since they
move in the cavity with the same group velocity.

To investigate this coexistence, we show the bifurcation diagram for these two
solutions with the detuning parameters fixed, the injected field amplitude as the
control parameter, and we describe the branches through the normalized L2-norm
N = ∫

S0/Ldτ , where L is the size of the system. The profiles obtained through
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numerical simulations were used to initiate a predictor–corrector continuation algo-
rithm [53]. The so obtained diagram, shown in Fig. 12, is called a collapsed het-
eroclinic snaking, because the branch oscillates with an exponentially decreasing
amplitude around the Maxwell point until it collapses on it. A closeup of the col-
lapsed snaking curve is shown alongside the bifurcation diagram. Profiles associated
with the points (a–h) are shown underneath the bifurcation diagram. Each turning
point of the snaking curve corresponds to a change of stability, and a new stable state
brings a new solution, with an additional bump at the extremum of the DS each time,
as can be seen on profiles (a–d). This branch emerges from the point SN1 where
the CW regains its stability and the higher stable CW appears, and after oscillating
and collapsing, it connects to the point SN2 where the lower stable CW loses its
stability. This point actually corresponds to a bifurcation to a MI state, that exists for
a range of the injection amplitude that is extremely small before turning unstable.
When the branch has collapsed on the Maxwell point and thus stops oscillating, the
solution stops changing and only the width of the DS varies as we continue along
the curve. Indeed, profiles (e–h) show that the width increases as we go down the
branch, meaning that the lower state invades the entire system. At the end of this
branch, we connect back to the lower stable CW at the point SN2 as the lower state
has entirely invaded the system.

The DSs formed by this mechanism are robust structures, and they can coexist in
the same system as shown in Fig. 13which depicts the space–timemap of a numerical
simulation with periodic boundary conditions, initialized with random noise added
to a constant value between the two stable CWs. We also show their normalized
Stokes parameters, S0 to s3, to illustrate that the two different coexisting dark DSs
exhibit slightly different peak powers and polarization properties.

5 Tristability in the Case of Normal Dispersion

Wewill now consider the propagation of light in a pumped Kerr cavity in the normal
dispersion regime for higher values of the detuning parameters. As this parameter
is increased, the hysteresis loop formed by the CWs widens and undergoes new
bifurcations. In particular, a secondhysteresis loop can appear leading to the existence
of three different solutions for the same value of the detuning, as shown by the linear
stability analysis represented in Fig. 14 in the phase space (Ei , θx ). In this map,
light blue regions correspond to two stable solutions coexisting, while light red
regions correspond to three stable solutions coexisting. At the very bottom of the
figure (low values of θx ), for a fixed value of the detunings and varying Ei , only
one light blue region (II) is encountered, corresponding to a simple hysteresis loop.
Higher in the map, two distinct blue regions can be encountered while varying Ei

for fixed θx as highlighted by the dashed line (a), which is the above-mentioned
case of two hysteresis loops. The input–output characteristics of the CWs for this
cut are shown in Fig. 15(a) with the output intensity as a function of the injected
field amplitude. Because the two hysteresis loops widen as the detuning is increased,
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i i

Fig. 12 Bifurcation diagram showing the L2-norm N as a function of injected field amplitude
Ei . The right panel is a zoom around the snaking curve. Solid (dotted) curves correspond to stable
(unstable) localized solutions. (a–h) Profiles of the total field intensity S0. Parameters are θx = 1.90
and θy = 1.95. Periodic boundary conditions were used. Reproduced from [49]

they end up overlapping, leading to the first light red tristable region (IV). As θx
is increased, this tristable region disappears as the upper hysteresis loop collapses
into a single monotonous curve, going back into simple bistability represented by
the light blue region II. The light red region IV then reappears for higher θx values
through the inverse process, as a new hysteresis loop reappears near the upper saddle-
node bifurcation. An example of tristable region is highlighted by the dashed line
(b), for which the corresponding input–output characteristics of the CWs are shown
in Fig. 15(b). This curve shows the coexistence of three stable solutions for the
same value of all parameters. We can also notice in Fig. 14 the presence of regions
with modulationally unstable states bordering on the right the bistable and tristable
regions. These states will not be relevant here as we will operate far from them, and
thus far from any branch corresponding to modulationally unstable states.

The polarization properties of each of these CW solutions are already of interest.
Despite an injected light with a constant and completely linear polarization, cross-
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Fig. 13 (Top) (τ , t) map of the total intensity S0. Parameters are the same as in Fig. 11. (Bottom)
The Normalized Stokes parameters S0, s1, s2, and s3 as functions of the fast time τ . Reproduced
from [49]

phase modulation (XPM) allows the intracavity fields to show a rich complexity
in how each of the Stokes parameters evolves as shown in the previous sections.
To investigate this further, the normalized Stokes parameters for the current set of
parameters are shown in Fig. 16. All of the Stokes components undergo hysteresis
loops at the same values of the pump, as those hystereses correspond to the ones
from Fig. 15, but with very different output values, so that the three CWs exhibit very
different polarization properties. The linear components can be in any configuration;
however, one common trait between those CWs is that they are elliptically polarized,
even if slightly. It can also be noted that the sign of s3 changes between both curves
Fig. 15(a) and Fig. 15(b), indicating that a change in the value of the detunings can
also lead to notable variations in the polarization properties of the intracavity light.

Similarly to the previous section, the coexistence of stable CW solutions for
fixed values of the parameters allows for fronts connecting them to emerge. The
most important feature of these fronts is the presence of oscillatory tails damped
around the CW, allowing two fronts evolving toward each other to interlock and
subsequently constitute a stable structure embedded in a CW background and with a
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Fig. 14 Stability regions in the parameter space Ei–θx . Parameters are: θy = 5 and η = −1. Region
I corresponds to monostability, with the presence of only one stable state. Region II corresponds
to bistability between two stable states. Region III corresponds to bistability between one stable
state and one modulationally unstable state. Region IV corresponds to tristability between three
stable states. Region V corresponds to tristability between two stable states and one modulationally
unstable state. Finally, region VI corresponds to tristability between one stable state and two mod-
ulationally unstable states. Examples of two consecutive bistable curves and of a tristable curve
along the dashed lines (a) and (b) are shown in Fig. 15a, b, respectively. Reproduced from [41]
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Fig. 15 Bistable curve (a) and tristable curve (b) obtained for θy = 5. These curves are taken
along the dashed lines (a) and (b) in Fig. 14 corresponding to θx = 2.7 and θx = 6.5, respectively.
Full lines correspond to stable states, dashed lines correspond to unstable states, and dotted lines
correspond to modulationally unstable states. Reproduced from [41]

finite width. This front-locking mechanism arises as a result of the complex balance
between attractive and repulsive interactions occurring through the front oscillatory
tails, with the stable structures being dissipative solitons.

The bifurcation diagram for these dark DSs, corresponding to the case with two
distinct hysteresis loops shown in Fig. 15(a), is presented in Fig. 17. Similarly to
the previous bifurcation diagrams, it was obtained through numerical continuation
with a predictor–corrector algorithm that was initialized with a profile obtained by
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time-stepping numerical simulations with periodic boundary conditions. Two types
of fronts can appear, connecting either CW3with CW2, or CW2with CW1. For each
type of front, a type of DS can be stabilized, and the branches corresponding to each
of these two types of dark DSs (light orange for the connection between CW3 with
CW2 and dark blue for the connection between CW2 with CW1) present themselves
again in the form of a collapsed snaking curve. They emerge from the saddle-node
bifurcations corresponding to the appearance of CW3 and CW2 and connecting
to the modulational instability bifurcation responsible for the loss of stability of,
respectively, CW1 and CW2. We notice that the collapsed snakings exhibit more
oscillations and that their amplitudes are larger compared to the previous section,
which is explained by the fact that the hysteresis loops are wider than previous due
to the higher value of the detuning parameters. The profiles of the Stokes parameters
corresponding to the points (a)–(c) and (a′)–(c′) are depicted in Fig. 18 and show that
again, each turning point leading to a new stable branch of dark DS corresponds to a
new type of solution, with an additional bump at the bottom of the profile. As a dark
DS corresponds to an excursion from a background corresponding to a CW solution
into another CW solution for a short domain of the fast time τ , the Stokes parameters
behave in the same way as the ones of the CW solutions. Since the CWs have very
different polarization properties that are always elliptical, the DSs exhibit the same
properties. DSs that belong to the same snaking curve share more or less the same
polarization properties with slight variations as the shapes of the profiles differ. The
differences between DSs that belong to different snaking curves are however more
pronounced, as the two CWs involved are not the same in each case. This means
that the background values, the peak powers as well as the Stokes parameters are all
very different in this case. The spectra corresponding to the total intensity profiles of
these solutions are again optical frequency combs, shown in Fig. 19. The frequency
combs of the DSs share the same free spectral range regardless of their types, as they
all share the same repetition rate.

The branch corresponding to modulationally unstable states is also shown in
Fig. 20 to evidence that both collapsed snakings occur in a regime that is far enough
from it, so that there can be no confusion between our front-locking-induced DSs
and modulational instability-induced DSs.

The bifurcation diagramcorresponding to the casewith twooverlapping hysteresis
loops shown in Fig. 15b is presented in Fig. 21. This time, the two types of fronts
connecting either CW3 with CW2, or CW2 with CW1 can appear for the same
values of the system parameters, and so can the associated dark DSs. We obtain
again a collapsed snaking bifurcation diagram for the branches corresponding to
each of these two types of DSs (light orange for the connection between CW3 with
CW2 and dark blue for the connection between CW2 with CW1), except that the
two oscillating curves now overlap for a certain range of the injected field amplitude
called C. As such, two types of dark DSs exist again, (a)–(c) connecting CW1 to
CW2 and (a′)–(c′) connecting CW2 to CW3, shown in Fig. 22. The two types of
DSs, similarly to the previous case, have very different peak powers, background
values, and polarization properties. In the region C, the system can host dark DSs of
the two types, (a)–(c) and (a′)–(c′). However, they cannot be hosted at the same time
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Fig. 18 Profiles of the Stokes parameters S0, s1, s2, and s3 as a function of the fast time τ for
the stable DS solutions indicated in Fig. 17. The size of the system was taken as L = 100. Profiles
(a)–(c) correspond to the region highlighted on the left, while (a′)–(c′) correspond to the region
highlighted on the right. Injection amplitude values are Ei = (a) 2.2917, (b) 2.2922, (c) 2.2926 (a′)
2.9394, (b′) 2.9406, and (c′) 2.9406. Reproduced from [41]

Fig. 19 Vector Kerr combs
corresponding to Fourier
transform of the stable DS
solutions shown in Fig. 18.
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Fig. 20 Close-up showing
the MI branch emerging
from the end of the upper
snaking curve from Fig. 17a.
Reproduced from [41]
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lines. MI states are denoted with dotted lines. Parameters are θx = 6.5 and θy = 4.5. The size of
the system was taken as L = 200. Right panel: Close-up on the snaking curves collapsing onto
the Maxwell point of each respective bistability showing the coexistence region C . Reproduced
from [41]
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Fig. 22 Profiles of the Stokes parameters S0, s1, s2, and s3 as a function of the fast time τ for the
stable solutions indicated in Fig. 21. Parameters are the same as in Fig. 21. Injection amplitude values
are Ei = (a) 3.2195, (b) 3.217, (c) 3.2209, (a′) 3.3094, (b′) 3.3087, and (c′) 3.3085. Reproduced
from [41]

and in the same physical system as they require different background intensities.
The combs corresponding to these profiles are drawn in Fig. 23. They share the same
properties as the ones from Fig. 19, except for a different FSR that is only due to
the fact we used a different cavity length in this case, for the sake of numerical
convenience.
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Fig. 23 Vector Kerr combs
corresponding to the stable
solutions shown in Fig. 22.
Reproduced from [41]
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6 Conclusions and Perspectives

We have investigated the formation of dissipative solitons in high-Q micro- and
macro-resonators driven by a linearly polarized injected light. We have studied the
influence of the polarization degrees of freedom in these optical resonators that are
described by the vectorial Lugiato–Lefever equation. These additional degrees of
freedom impact the homogeneous steady states solutions by creating a new critical
second-order transition allowing for the generation of multistability. We have shown
that there can be up to three coexisting stable solutions. Two operating regimes were
considered: anomalous and normal dispersion.

In the anomalous dispersion regime, the linear stability analysis indicated that one
or more homogeneous solutions suffer modulational instability. We have focused
on the situation where two modulationally unstable homogeneous solutions coexist
with one stable CW solution. Besides periodic solutions, an infinite number of DSs
characterized by either a odd or even number of peaks coexist with the periodic
and the CW solutions. The system can host two types of DSs, as the stable CW
solution provides the continuous background needed to host them, and the system
exhibits multistability. We have shown that their bifurcation diagram each follows
an homoclinic snaking type of bifurcation. These two types of DSs exhibit different
peak powers and polarization properties and can coexist in the same physical system.

In the normal dispersion regime, we first showed that for low values of the detun-
ing, we obtain a bistable regime where DSs can be formed thanks to the interaction
between switchingwaves, or front, connecting pairs of CWsolutions. The bifurcation
diagram of these DSs obeys collapsed heteroclinic snaking. Then, for higher values
of the detuning, there can be up to the three coexisting CW solutions. The system
can also host two types of DSs, each exhibiting a separate collapsed snaking. Again,
the two types of DSs exhibit different peak powers and polarization properties. For
the right values of the detuning parameters, these two collapsed snaking curves can
have an overlapping domain of stability and the two types can coexist for the same
values of the system parameters, however not in the same physical system.



352 B. Kostet et al.

These results bring new insights into the properties of dissipative structures in
driven resonators when the polarization degrees of freedom are taken into account.
In order to further complete the description, the influence of the group-velocity
mismatch between the two polarization components should be considered. However
neglected in the present study, this property can significantly impact the dynamics,
as it leads to a drift of the DSs caused by a breaking of the τ → −τ symmetry.
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