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Summary

The role of photovoltaic(PV) cells is becoming more and more important in
the production of renewable energies. However, this technology su�ers from
poor e�ciency in converting solar energy into electrical current, especially
because of the recombination of the excitons in the cell.

One can divide the exciton recombinations in two categories: the radiative
and nonradiative recombinations. The aim of this work is to quantify how
the radiative recombination of excitons depends on the cell geometrical and
dielectric parameters.

To this end, we shall consider the solar cell as an electromagnetic cavity in
which an exciton, modeled as an electrical dipole, experiences the electrical
�eld of the cavity.

The dipole will be modeled as a two-level system whose wavefunction
would be disturbed by the electrical �eld of vacuum �uctuations of the cavity.
This will lead to an integral formula for the radiative recombination rate,
which will be evaluated.

The results will also be simulated in Mathematica 7.0. Ways of improving
solar cells will also be suggested.
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Chapter 1

Introduction

1.1 Motivations

The total energy needs of the world keep getting higher[1]. Moreover, the
greenhouse gases, as well as problems of treating the nuclear waste, tend to
force thinking on alternative sources of energy. In the crowd of available so-
lutions (wind energy, hydroelectric energy and many others), we decided to
have a particular look on PV technology. This technology has taken advan-
tage of the oil crisis in the 70's to begin being available to the general public.
The technology also took advantage of the semiconductor industry as well as
governmental development programs to �nally become a very fast develop-
ping alternative source of energy[2]. The state of the art of the champions
PV modules in converting solar energy into electrical energy is summed up in
Fig. 1.1. One can then notice that the semiconductor PV cells have a great
advance: when semiconductor PV cells reach a maximal 41.6% e�ciency,
the world champion �alternative technology� PV cell reaches only 11.1% ef-
�ciency. Although semiconductor PVs keep presenting higher e�ciencies,
care has to be given to alternative technologies, because of the di�culties
to recycle semiconductor PV cells and the high extraction/manufacture cost
inherent to semiconductors[3].

Thus, even if the e�ciency of such alternative modules is far behind the
semiconductor one, they require a special interest.
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Figure 1.1: E�ciency of champion PV modules on converting solar energy
into electricity. Source:[4]
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1.2 Basics of solar cells

1.2.1 PN junction

In this section, we describe the basic phenomena responsible for the current
emission by a PV cell. At �rst, we de�ne the PN junction, to then proceed
with the mechanism. Most atoms in the IV column of the periodic table
form covalent crystals. As an example, the structure of a silicium crystal is
depicted Fig 1.2.

Figure 1.2: Scheme of a crystal of silicium. Source:[5]

This crystal can now be modi�ed in order to have special properties, such
as great conductivity of positive or negative charges. One would also talk of
�doping�. This doping mainly consists in injecting impurities (something else
than the atoms normally present in the crystal) in a crystal, which would
produce an excess of a type of carriers. One can then distinguish two types of
doping: a semiconductor is said to be �n-doped� when it has a lack of positive
charges, that is, an excess of negative charges. Such a crystal is more likely to
conduct electrons than non doped silicium. It can be technologically realised
by replacing a silicium atom by a pentavalent atom(e.g. phosphorus), as
depicted in Fig. 1.3.

Figure 1.3: The Si atom in the middle has been replaced by a P atom. In
red: the extra electron, free from bindings.
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A semiconductor is also �p-doped� when it has an extra �hole�, that is,
when it has lost an electron. Instead of replacing a quadrivalent atom by
a pentavalent atom as we did in the previous case, we here use a trivalent
atom, e.g. boron. This is shown in Fig. 1.4.

Figure 1.4: The Si atom in the middle has been replaced by a B atom. The
hole di�uses in the crystal as a particle does; that is, this type of crystal is
more likely to conduct holes

If the crystal is on one side p-doped and n-doped on the other, one
would talk of a �pn-junction�. In such arrangements, electrons from the
donors atoms in the n-region recombine with positives holes from the accep-
tor atoms, producing a layer of negatively charged atoms[6]. This accumula-
tion of charges creates an electrical �eld which changes the potential for the
charge carriers, as depicted in Fig.1.5.

This electrical �eld is cucially important in a PV cell, as explained further
on. An other important property of semiconductors is their characteristic
energy levels. This work will not include a detailed theory of energy bands
in semiconductors. Details can be found in reference [7]. Here, we will only
use the result that the electronic energy structure of a pure semiconductor
looks at a �rst approximation as depicted in Fig. 1.6.

One can then understand that for a photon to be absorbed by an electron
in a semiconductor, it has to have an energy higher than the bandgap denoted
in Figure 1.6. If this photon has enough energy, then it can be absorbed in
the semiconductor material.

A PV cell is so built that light comes into the material from a n-doped
region[8]. In the ideal case, this photon creates an electron-hole pair in the
space charge region depicted in Fig.1.5. As this happens, an electron from the
valence band is ejected and di�uses in the material, being subjected to the
electrical �eld, to reach the top electrode. As the electron left the valence
band, a place is there free. This free place, called �hole� locally attracts
electrons from other bindings. Once a valence electron replaced the hole left
by the conduction electron, everything is as if the hole di�used as a particle
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Figure 1.5: Charge, electrical potential and voltage in a PN junction.
Source:[9]
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Figure 1.6: Typical energy band of electrons in a semiconductor: an electron
in the valence band is bounded to its ion. In the conduction band, it behaves
as a metallic electron. Source:[10]
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would have di�used. The hole so di�uses down to the bottom electrode.

As an electron is on the top electrode and a hole on the bottom electrode,
a direct current generation occurs. That is the mechanism of a PN-junction
photovoltaic cell. One can then take a look on how high the created current
is. To this end, one shall �rst consider the charge carrier population.

The charge carrier population n abides by the transport laws. By denot-
ing the distance in the material to the light collecting surface of the device
by z, the di�usion coe�cient by D, the source term by G and the losses term
by Γ, one has

D
∂2n

∂z2
+G(z)− Γn = 0. (1.1)

Most photons do not create electron-hole pairs; actually, the photon �ux
as a function of the position in the cell P (z) can be described by the Beer-
Lambert law[8]:

P (z) = P (0)e−αz, (1.2)

where α is the so called �absorbtion coe�cient�. This coe�cient is a function
of the photon energy, as well as of the considered material. We de�ne the
quantum e�ciency of electron-hole pair generation Φ1 such as

Φ1 =
Number of photons converted in charge carriers

Number of photons absorbed in the material
(1.3)

The rate of creation of electron-hole pairs per unit volume thus yields

G(z) = −Φ1
dP (z)

dz
= αΦ1P (0)e−αz. (1.4)

Inserting this result in Eq. (1.1), one has

D
d2n

dz2
+ αΦ1P (0)e−αz − Γn = 0. (1.5)

We can therewith de�ne the di�usion length L by

L =

√
D

Γ
. (1.6)

The solutions of Eq. (1.5) describe the transport of charge carriers. The
current generation can also be computed. Further development can be found
in [8].
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1.2.2 Schottky barrier solar cell

The preceeding scheme is nowadays the most e�cient one. Unfortunately,
this architecture relies heavily on semiconductor technology: using this ar-
chitecture with organic photoactive materials is a delicate issue. One of the
problems one can encounter is the short di�usion length of the excitons,
typically about a few nanometers [11]. Thus, even if the polymer PV cell
has to be thick enough to absorb enough photons to create enough so called
�excitons�, it has to be thinner than a semiconductor system. The so called
�Schottky architecture� is a special case of thin-�lm solar cells.

This section will describe the used polymer as a p-type material(as in
[12]). Concerning the metal, a property has to be taken into account: the
�ionization energy� of the metal. This property corresponds to the work
needed to remove an electron from the metallic crystal. If this ionisation
energy is low compared to that of the polymer (as depicted in Fig.1.7), then
the metallic electrons will be more likely to populate the interface between
the metal and the semiconductor, creating a potential characteristic of the so
called �Schottky barrier�. The metal-semiconductor interface is in this case
depicted as a �rectifying contact�. If the ionisation energy is close to the one
of the polymer, a so called �nonrectifying contact� occurs: no electron passes
through the interface. An electron energy diagram is depicted in Fig. 1.7.

BP

Bandgap Light

Electron
Energy

Distance in the active region

Al
Ag

Figure 1.7: left: rectifying contact with Al, right: nonrectifying contact with
Ag. ΦBP : Schottky barrier.

A nonrectifying contact has no in�uence on the distribution of charges.
Di�erence only occurs at the rectifying contact, where the charge distribu-
tion is similar to the one of a PN junction. As the energy distribution is
similar, similar phenomena occur. In particular, Eq. (1.5) stills apply for the
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excitons.

1.2.3 Schottky Polymer thin �lm PV

This architectrure applied to polymer thin �lm PV has special properties
[12]: when a polymer absorbs a photon, it becomes an exciton (nothing
more than an excited state of the polymer ). This exciton di�uses to the
space charge region at the rectifying interface between the metal and the
polymer. Then a charge separation occurs and free charges di�use in the
material, once more because of the electrical �eld: electrons to the rectifying
electrode, holes to the nonrectifying electrode. Excitons which recombine at
the nonrectifying electrode produce no current: the free charge carriers are
not subjected to a potential, and have therefore a negligible probability of
producing current[12].

A potential di�erence then occurs between the electrodes, current gener-
ation is achieved.

1.3 Enhancing PV cells

Ways of improving solar cells are numerous: light trapping[13], multijunction
[14], antire�exion coatings on the light collecting surface of the cell[15], oxide
or insulator layer between the semiconductor metal interface[16]...

The study of polymer photovoltaics is particularly relevant([3],[17]), be-
cause of process costs and di�culties inherent to semiconductor PVs.

The polymer PVs also su�er from a short di�usion length of the excitons,
resulting in a poor conversion e�ciency.

We also de�ne the quantum yield Φ2 of a material as

Φ2 =
Γradiative

Γ
. (1.7)

In the following sections, we will study the desexcitation of a material
presenting a quantum yield close to unity. Such materials do not exist yet,
but, if good results arise , one could consider looking for some.

1.4 Spontaneous emission in free space

In this section, we show how spontaneous emssion can be computed in free
space. In the next chapter,the same approach will be applied to study spon-
taneous emission in a solar cell geometry. To this end, we consider a quantum
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mechanical two-level system describing the exciton, and apply a time depen-
dant perturbative treatment to quantify the interaction between this system
and the vacuum electrical �eld.

1.4.1 Two-level system

We model the exciton as a two-level system. Physically speaking, the higher
energy Ei state |i〉 corresponds to the existence of the exciton, whereas the
lower energy Ef state |f〉 corresponds to the nonexistence of the exciton. At
a time t, this exciton is represented by the wavefunction

|ψ〉 = bi(t)e
− iEit~ |i〉+ bf (t)e

−
iEf t

~ |f〉, (1.8)

where, intitally
bi(0) = 1, bf (0) = 0. (1.9)

The probability for the system to be in the state|f〉 is then the probability
for the system to undergo a transition between states |i〉 and |f〉. One has
thus

Pi→f (t) = |bf (t)|2. (1.10)

Given the electric �eld E and the electric moment −er of the exciton, the
interaction hamiltonian is [18]

Hi = −eE · r. (1.11)

We assume that this interaction hamiltonian has no diagonal coe�cients.
This Hamiltonian is a perturbation for the two-level system which induces a
modi�cation of the coe�cients bi(t) and bf (t). We now let the electric �eld
be a monochromatic wave, that is

E = Ek(x)eiωkt, (1.12)

where the spatial dependence of the electrical �eld is contained in the vector
Ek(x), further described as Ek. The Schrödinger equation yields

i~
∂|ψ〉
∂t

= H|ψ〉. (1.13)

Projecting this equation on the eigenstate 〈f |, one has

i~
∂

∂t

(
bfe
−
iEf t

~

)
= bfe

−
iEf t

~ Ef + 〈f |Eke
iωkt · (−er)|(bie−

iEit

~ |i〉+ bfe
−
iEf t

~ |f〉).
(1.14)
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i~
∂bf
∂t

e−
iEf t

~ = bie
i(ωkt−Eit~ )〈f |Ek · (−er)|i〉. (1.15)

Expressing ω as

ω =
Ei − Ef

~
, (1.16)

we get
∂bf
∂t

= −ibie
i(ωk−ω)t〈f |Ek · (−er)|i〉

~
. (1.17)

Moreover, as electromagnetic walengths are typically large in comparison of
molecular dimensions, we de�ne µ such as

〈f |Ek · (−er)|i〉 = Ek · 〈f |(−er)|i〉 = Ek · µ. (1.18)

We thus have
∂bf
∂t

= −ibie
i(ωk−ω)tEk · µ

~
. (1.19)

For short times, the coe�cient bi(t) is approximately equal to its initial value,
given by (1.9). We thus approximate Eq. (1.19) by

∂bf
∂t

= −ie
i(ωk−ω)tEk · µ

~
. (1.20)

bf = −Ek · µ
~

(
ei(ωk−ω)t − 1

ωk − ω

)
(1.21)

|bf |2 =
|Ek · µ|2

(ωk − ω)2~2
∣∣ei(ωk−ω)t − 1

∣∣2 (1.22)

|bf |2 =
|Ek · µ|2

(ωk − ω)2~2
∣∣∣e i(ωk−ω)t2 − e

−i(ωk−ω)t
2

∣∣∣2 (1.23)

Pi→f = |bf |2 =
4|Ek · µ|2

(ωk − ω)2~2
sin2

[
(ωk − ω)t

2

]
(1.24)

We introduce the angle ζ between µ and Ek so that

Pi→f = |bf |2 =
4|Ek|2|µ|2 cos2(ζ)

(ωk − ω)2~2
sin2

[
(ωk − ω)t

2

]
(1.25)

We now consider an electrical �eld as a superposition of harmonic �elds

E =
∑
ωk

Eke
iωkt. (1.26)
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For a white spectrum presenting no phase corellation between its components,
one has [19]:

Pi→f =
∑
ωk

|Ek|2|µ|2 cos2(ζ)

~2
sin2[(ωk − ω)t/2]

(ωk − ω)2/4
. (1.27)

This treatment is expected to be valid for times large in regard of the
atomic period, that is

1

ωa
� t. (1.28)

A typical value of 1
ωa

(between the fondamental and the �rst excited state of
an hydrogen atom) is

13.6eV

~
≈ 10−16s, (1.29)

which is neglectible in comparison with the other scales of time we will use.
But, as we supposed the system to vary low enough to suppose bi = 1,

time has to be small in comparison to a characteristic timescale of the system.
Here, we take [19] the period of the Rabi oscillations into account:

t� ~
|µ · Ek|

. (1.30)

The Rabi oscillations occur at resonnance, when ωk = ω. The system then
oscillates between the states |i〉 and |f〉. After a period, the system is back
to its initial state. The electrical �eld has now to be further described: as
the medium in which the dipole evolves is vacuum, the dispersion relation
between the pulsation and the wavenumber k yields, for the electric �eld as
well as for the atomic frequency

ω = cka, ωk = ck. (1.31)

where

k =

 kx
ky
kz

 , k = ||k|| =
√
k2x + k2y + k2z . (1.32)

In the limit of a large domain, the set of electromagnetic modes becomes
dense, and (1.26) can be rewritten as

E =

∫∫∫
R3
+

Eke
iωktρ(k)dk, (1.33)
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where ρ(k) is the density of electromagnetic modes presenting a wavevector
k. Eq. (1.27) then becomes

Pi→f =

∫∫∫
R3
+

|Ek|2|µ|2 cos2(ζ)

~2
sin2[(ωk − ω)t/2]

(ωk − ω)2/4
ρ(k)dk. (1.34)

Using Eq. (1.31)

Pi→f =

∫∫∫
R3
+

|Ek|2|µ|2 cos2(ζ)

~2
sin2[(k − ka)ct/2]

(k − ka)2c2/4
ρ(k)dk (1.35)

Assuming a symmetry along the directions x and y, one has, with

k =
√
k2‖ + k2z , k‖ cos(β) = kx, k‖ sin(β) = ky, (1.36)

a density of states ρ independant of β. Thus,

Pi→f =

∫∫
R2
+

dkzdk‖

∫ π/2

0

dβ
|Ek|2|µ|2 cos2(ζ)

~2
sin2[(k − ka)ct/2]

(k − ka)2c2/4
× ρ(k‖, kz)k‖dk‖. (1.37)

To perform the integration over k‖, we use the following change of variable:

u =

(√
k2z + k2‖ − ka

)
ct

2
→

√
k2z + k2‖ = ka +

2u

ct
, (1.38)

du =
ct

2

k‖dk‖√
k2z + k2‖

→ k‖dk‖ =

(
ka +

2u

ct

)
2du

ct
. (1.39)

Therewith,

Pi→f =

∫ ∞
0

dkz

∫ π/2

0

dβ

∫ ∞
(kz−ka)ct

2

2|Ek|2|µ|2 cos2(ζ)t

c~2
sin2(u)

u2

× ρ

√(ka +
2u

ct

)2

− k2z , kz

(ka +
2u

ct

)
du. (1.40)

We let now t tend to in�nity,

Pi→f =
2πkat

c~2

∫ ka

0

dkz

∫ π
2

0

dβ|Ek|2|µ|2 cos2(ζ)ρ(k‖, kz). (1.41)
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The components of the electrical �eld presenting a frequency di�ering from
the exciton frequency are not taken into account anymore. Physically, that
means that, as t tends to in�nity, only the resonnant contributions of the
electromagnetic modes of the cavity have in�uence on the exciton. Thus, in
the following, we do not make distinctions between (ωk, k), respectingly pul-
sation and wavenumber of the electromagnetic �eld, and (ω, ka), repectingly
pulsation and wavenumber of the exciton. We now use (ω, k) to describe
these quantities. Further assuming a symmetry on the (x, y) plane, one has

Pi→f =
π2kt

c~2

∫ k

0

dkz|Ek|2|µ|2 cos2(ζ)ρ(k‖, kz). (1.42)

Or, equivalently:

Pi→f =
π2ωtε0µ0

~2

∫ k

0

dkz|Ek|2|µ|2 cos2(ζ)ρ(k‖, kz) (1.43)

1.4.2 Mode density

In this section, we consider an empty cavity presenting an electromagnetic
�eld. This cavity study let us compute a mode density inherent to the cav-
ity. To derive the vacuum mode density, we will let the dimensions of the
cavity tend to in�nity. We thus consider, as depicted in Fig. 1.8, perfectly
conducting walls in

x = 0, Lx y = 0, Ly z = 0, Lz (1.44)

In this box, the wavevectors are quanti�ed by the boundary conditions: in-
deed, the component of the electrical �eld in the plane of a perfectly con-
ducting wall has to vanish on each perfectly conducting wall. We thus have

Ek =

 Ex cos(kxx) sin(kyy) sin(kzz)
Ey sin(kxx) cos(kyy) sin(kzz)
Ez sin(kxx) sin(kyy) cos(kzz)

 . (1.45)

The Maxwell equation
∇ · E = 0, (1.46)

further imposes that
Ek · k = 0. (1.47)

That means that, for each wavevector k, the electric �eld has to be in the
plane normal to this vector: there are two directions of polarisation for E



20 CHAPTER 1. INTRODUCTION

L

L

Lx y

z

Figure 1.8: Electromagnetic cavity. Source: [20]

per wavevector k. A factor 2 in the mode density has thus to be taken into
account. Using Eq. (1.32), one has

kx =
mπ

Lx
, (1.48)

ky =
nπ

Ly
, (1.49)

kz =
pπ

Lz
, (1.50)

where m, n and p are positive integers. The last set of equations also gives
the distance between two adjacent modes in wavevector space

4kx =
π

Lx
, (1.51)

4ky =
π

Ly
, (1.52)

4kz =
π

Lz
. (1.53)

The density of states is thus

ρ(kx, ky, kz) =
2

4kx4ky4kz
=

2LxLyLz
π3

=
2V

π3
. (1.54)

Inserting this result in Eq. (1.43), one has

Pi→f =
2V ωε0µ0t

π~2

∫ k

0

dkz|Ek|2|µ|2 cos2(ζ) (1.55)
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1.4.3 Amplitude of the electrical �eld

In this section, we will choose the amplitude |Ek|2 to make it correspond to
the electromagnetic energy of vacuum. The total electromagnetic energy of
the system is

W =

∫∫∫
V

(
ε0|E|2 + µ0|H|2

2

)
dx. (1.56)

When the dimensions of the box tend to in�nity, the system becomes
isotropic: we thus choose the polarisation of the electrical �eld to be x, and
its wavector to be directed in the direction (ey + ez)

Ek = Ex sin(kyy) sin(kyz)ex, (1.57)

|E|2 = E2
x sin2(kyy) sin2(kyz). (1.58)

The Maxwell equations then give

∇× Ek = iµ0ωHk (1.59)

Ex

 0
ky sin(kyy) cos(kyz)
−ky cos(kyy) sin(kyz)

 = iµ0ωHk (1.60)

|Hk|2 =
E2
xk

2
y

µ2
0ω

2

[
sin2(kyy) cos2(kyz) + cos2(kyy) sin2(kyz)

]
. (1.61)

Taking a mean value for the terms oscillating with spatial coordinates,〈
ε0|Ek|2 + µ0|Hk|2

2

〉
x

=
ε0E

2
x

4

〈
sin2(kyy) + sin2(kyz)

〉
x
. (1.62)

〈
ε0|Ek|2 + µ0|Hk|2

2

〉
x

=
ε0E

2
x

4
. (1.63)

Thus, Eq. (1.56) gives

W =
V ε0E

2
x

4
, (1.64)

We want this energy to be the one of the vacuum, that is ( [21] p.184) ~ω/2.
Therewith, one gets

E2
x =

2~ω
ε0V

(1.65)

We thus have, by taking a mean value for the spatial coordinates

|Ek|2 =
E2
x

4
=

~ω
2ε0V

(1.66)
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Equation (1.55) thus becomes

Pi→f =
ω2µ0t

π~

∫ k

0

dkz|µ|2 cos2(ζ) (1.67)

We now suppose a random orientation of µ: we thus take a mean value for
cos2(ζ). As ζ is an angle between two vectors, the mean value of cos2(ζ) is
1/3. Equation (1.67) then becomes

Pi→f =
ω2µ0t

3π~

∫ k

0

dkz|µ|2 (1.68)

Pi→f =
ω2kµ0|µ|2t

3π~
(1.69)

Pi→f =
ω3√ε0µ3/2

0 |µ|2t
3π~

(1.70)

We then de�ne the spontaneous desexcitation rate in vacuum Γ0 such as

Γ0 =
Pi→f
t

. (1.71)

Γ0 =
ω3√ε0µ3/2

0 |µ|2

3π~
(1.72)

In a medium of permittivity ε1, one has

Γ1 =
ω3µ

3/2
0

√
ε1|µ|2

3π~
(1.73)



Chapter 2

Fermi Golden Rule in a solar cell

geometry

The solar cell depicted in Fig. 2.1 is modelled as in Fig. 2.2. This cell is
modelled as a cavity enclosed by perfect mirrors at

x = 0, Lx, y = 0, Ly, z = 0, h+ d+ Lz. (2.1)

Figure 2.1: Scheme of the cell studied. Length of the semi transparent elec-
trode: d. Length of the active region: h.Source:[11]

The region 1 is the active region where excitons are created. It is a poly-
mer whose quantum e�ciency is close to 1. The semitransparent electrode is

23
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Figure 2.2: Geometry of the problem; region 1:active material, permittiv-
ity ε1, region 2: semi transparent electrode, permittivity ε2, region 3: air,
permittivity ε0.

a slice of transparent conductive oxide, such as indium tin oxide, �uorine tin
oxide or zinc oxide [22]. We do not take into account the permeabilities of
the media. The transverse dimensions are, in practice, about a couple of cen-
timeters, while other dimensions are on a nanoscale range: the wavelengths
are mainly in infrared and visible range of the electromagnetic spectrum,
the di�usion length of the excitons is around [11] 5nm, the active region is
approximatively 100nm thick, while the semitransparent electrode is about
5nm thick. We thus let the transverse dimensions tend to in�nity.

In this chapter, we derive expressions for the mode density as well as
for the spatial dependance of the electromagnetic �eld Ek. The conclusion
of this chapter will be an expression of the transition probability Pi→f as a
function of the geometric and dielectric parameters of the PV cell.

The mode density derived in Eq. (1.54) is used in this chapter: as the
volume of the third region is arbitrarly large, we do not take the �rst and
second region in the development of this density of states.

As the medium is not homogeneous anymore, we introduce an alternative
wavenumber, whose expression yields

q2i + k2‖ = n2
i k

2, (2.2)

where ni =
√

εi
ε0

stands for the refractive index of region i. In the third

region, one has

q3 = kz. (2.3)
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2.1 Electromagnetic modes

The Maxwell equations [23] are

∇×Hk = −iωεEk, ∇ ·Hk = 0, (2.4)

∇× Ek = iωµHk, ∇ · Ek = 0. (2.5)

The geometry of the system invites to split Hk and Ek into

Hk = Hzez + Ht, E = Ezez + Et, ∇t =

 ∂
∂x
∂
∂y

0

 , (2.6)

where the subscript t refers to transverse components. Eqs. (2.4) and (2.5)
become

∂

∂z
(ez ×Ht) + ∇t ×Hzez + ∇t ×Ht = −iωεE, (2.7)

∂

∂z
(ez × Et) + ∇t × Ezez + ∇t × Et = iωµH. (2.8)

The electromagnetics modes can be split in two categories:

1. Transverse electric (TE) in the z direction if the component of the
electric �eld in this direction is zero

2. Transverse magnetic (TM) in the z direction if the component of the
magnetic �eld in this direction is zero

2.1.1 Transverse electric modes

In this section, we compute the desexcitation rate induced by transverse
electric modes. To this end, we use continuity equations, expliciting the
structure of the TE modes, before normalising the amplitude to make the
energy of those modes equal to the vacuum electromagnetic energy.

Continuity and characteristic equations

In this section, we make use of the Maxwell equations in the case of the TE
modes to derive the spatial dependence of the electric �eld. To this end, we
set the continuity equations of the system. One has, for those modes, as e.g.
in[23],

Hz = ψ, (2.9)
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Ht =
∂

k2‖∂z

(
∂Hz
∂x
∂Hz
∂y

)
, Et =

iµω

k2‖

(
∂Hz
∂y

−∂Hz
∂x

)
. (2.10)

In z = 0 and z = Lz + h + d stand perfect mirrors: Hz has then to vanish
for those conditions. On the transverse walls, the component of the electric
�eld transverse to the surface has to do so; ψ has then the following form.

ψ1 = S1 sin(q1z) cos(kxx) cos(kyy), (2.11)

ψ2 = (U2e
iq2(z−h) +D2e

−iq2(z−h)) cos(kxx) cos(kyy), (2.12)

ψ3 = U3(e
iq3(z−h−d) − e2iq3Lze−iq3(z−h−d)) cos(kxx) cos(kyy). (2.13)

The transverse components of each �eld have to be continous at each inter-
face between two regions. Thus, for the electrical �eld to have continuous
components in the transverse directions, the function ψ has to satisfy

[ψ]+− = 0 (2.14)

at each interface. For the transverse components of the magnetic �eld, that
is [

∂ψ

∂z

]+
−

= 0 (2.15)

at each interface. We now develop those transition conditions between the
second and the third region.

U2e
iq2d +D2e

−iq2d = U3(1− e2iq3Lz) (2.16)

q2(U2e
iq2d −D2e

−iq2d) = q3U3(1 + e2iq3Lz) (2.17)

Excluding the e2iq3Lz term, one gets

(q3 + q2)U2e
iq2d + (q3 − q2)D2e

−iq2d = 2q3U3 (2.18)

which can be rewritten as

U2e
iq2d +

q3 − q2
q3 + q2

D2e
−iq2d = 2

q3
q3 + q2

U3 (2.19)

We now de�ne the re�exion coe�cients as

R12 =
q1 − q2
q1 + q2

, R23 =
q2 − q3
q2 + q3

. (2.20)

So that

e2iq2dU2 −R23D2 = (1−R23)e
iq2dU3 (2.21)
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We now consider the transition conditions between regions 1 and 2

S1 sin(q1h) = U2 +D2 (2.22)

q1S1 cos(q1h) = iq2(U2 −D2) (2.23)

Excluding S1, it comes

iq2 sin(q1h)(U2 −D2) = q1 cos(q1h)(U2 +D2), (2.24)

which can be rewritten as

[q1 cos(q1h)− iq2 sin(q1h)]U2 + [q1 cos(q1h) + iq2 sin(q1h)]D2 = 0 (2.25)

After some algebra, one has(
q1 − q2
q1 + q2

e2iq1h + 1

)
U2 +

(
e2iq1h +

q1 − q2
q1 + q2

)
D2 = 0. (2.26)

Inserting Eq. (2.20) in Eq. (2.26), it comes(
R12e

2iq1h + 1
)
U2 +

(
e2iq1h +R12

)
D2 = 0. (2.27)

Eqs.(2.21) and (2.27) can be rewritten as(
e2iq2d −R23

R12e
2iq1h + 1 e2iq1h +R12

)(
U2

D2

)
=

(
(1−R23)e

iq2dU3

0

)
. (2.28)

We then de�ne ∆ as

∆ =

∣∣∣∣ e2iq2d −R23

R12e
2iq1h + 1 e2iq1h +R12

∣∣∣∣ , (2.29)

∆ = e2i(q1h+q2d) +R12(e
2iq2d +R23e

2iq1h) +R23. (2.30)

U2 and D2 thus yield

U2 =
(1−R23)e

iq2dU3(e
2iq1h +R12)

∆
, (2.31)

D2 = −(1−R23)e
iq2dU3(e

2iq1hR12 + 1)

∆
. (2.32)

Knowing U2 and D2, we can use Eq. (2.22):

S1
eiq1h − e−iq1h

2i
=

(1−R23)e
iq2dU3

∆

[
e2iq1h +R12 − (e2iq1hR12 + 1)

]
, (2.33)
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after some calculations, it comes

S1 =
2i(1−R23)(1−R12)e

i(q1h+q2d)U3

∆
(2.34)

Injecting the equations (2.31) and (2.32) in Eq. (2.16), one has

(1−R23)e
iq2dU3(e

2iq1h +R12)

∆
eiq2d

− (1−R23)e
iq2dU3(e

2iq1hR12 + 1)

∆
e−iq2d = U3(1− e2iq3Lz) (2.35)

Finally, using Eq. (2.30),

∆e2iq3Lz = R23e
2i(q1h+q2d) +R23R12e

2iq2d + e2iq1hR12 + 1 (2.36)

This is the characteristic equation of the system. A completely equivalent
expression, using trigonometric functions yields

tan(q1h) tan(q2d) tan(q3Lz)−
q1 tan(q3Lz)

q2
− q3 tan(q1h)

q2

=
q1q3 tan(q2d)

q22
(2.37)

A discussion about its properties will take place in chapter 4.

Normalisation

In this section, we normalise the amplitude of the electromagnetic modes
so that their energy will be the one the vacuum. To this end, we derive
an expression for the TE modes in the third region, making the assumption
that all the energy is in. We now normalise U3, taking the total energy of
the system into account. We have:

Ek =
iµ0ω

k2‖

 ∂ψi
∂y

−∂ψi
∂x

0

 Hk =


∂2ψi
k2‖∂z∂x

∂2ψi
k2‖∂z∂y

ψi

 (2.38)

where i ∈ {1, 2, 3} is the number of the region in which the �eld is being
expressed. The total electromagnetic energy of the system is:

W =

∫ Lx

0

dx

∫ Ly

0

dy

∫ Lz

0

dz

(
ε|E|2 + µ0|H|2

2

)
(2.39)



2.1. ELECTROMAGNETIC MODES 29

As the region 3 is arbitrarly large, we consider that all the energy is in:

W =

∫ Lx

0

dx

∫ Ly

0

dy

∫ Lz

h+d

dz

(
ε0|E|2 + µ0|H|2

2

)
(2.40)

We now have to calculate the electrical �eld in the third region. First, we
inject Eq. (2.13) in (2.38)

Ek =
iµ0ωU3(e

iq3(z−h−d) − e2iq3Lze−iq3(z−h−d))
k2‖

 −ky cos(kxx) sin(kyy)
kx sin(kxx) cos(kyy)

0

 .

(2.41)
It comes

ε0|E|2 =
ε0µ

2
0ω

2|U3|2|eiq3(z−h−d) − e2iq3Lze−iq3(z−h−d)|2

k4‖

[
k2y cos2(kxx) sin2(kyy)

+ k2x sin2(kxx) cos2(kyy)
]

(2.42)

We now derive an expression for |H|2 in the third region, using the same
method:

Hk =


−iq3kxU3(eiq3(z−h−d)+e2iq3Lz e−iq3(z−h−d)) sin(kxx) cos(kyy)

k2‖
−iq3kyU3(eiq3(z−h−d)+e2iq3Lz e−iq3(z−h−d)) cos(kxx) sin(kyy)

k2‖

U3(e
iq3(z−h−d) − e2iq3Lze−iq3(z−h−d)) cos(kxx) cos(kyy)

 (2.43)

It comes

|H|2

|U3|2
=
q23|eiq3(z−h−d) + e2iq3Lze−iq3(z−h−d)|2

k4‖

[
k2x sin2(kxx) cos2(kyy)

+k2y cos2(kxx) sin2(kyy)
]
+|eiq3(z−h−d)−e2iq3Lze−iq3(z−h−d)|2 cos2(kxx) cos2(kyy).

(2.44)

Taking a mean value for the terms oscillating with spatial coordinates, one
gets〈
ε0|E|2 + µ0|H|2

2

〉
x

=
|U3|2µ0

4

[
2ε0µ0ω

2

k4‖

(
k2y + k2x

2

)
+

2q23
k4‖

(
k2x + k2y

2

)
+ 1

]
(2.45)

It comes 〈
ε0|E|2 + µ0|H|2

2

〉
x

=
|U3|2ε0µ2

0ω
2

2k2‖
(2.46)
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We then have

W =
|U3|2ε0µ2

0ω
2V

2k2‖
(2.47)

Where V is the volume of the region 3. We want this energy to be equal to
the energy of the vacuum ~ω

2
. This gives us

|U3|2 =
~k2‖

V ε0µ2
0ω

(2.48)

Transition probability induced by the TE modes

We are now in position to compute the transition probability induced by the
TE modes. To this end, we compute |µ ·Ek|2 in the �rst region, before using
Eq. (1.55). We thus have assumed that the density of modes is identical as
the one of the vacuum case.

First, we compute the electrical �eld in the �rst region, using Eq. (2.38)

Ek =
S1iµ0ω sin(q1z)

k2‖

 −ky sin(kxx) cos(kyy)
kx cos(kxx) sin(kyy)

0

 (2.49)

Inserting (2.34), it comes

Ek =
−2(1−R23)(1−R12)e

i(q1h+q2d)U3µ0ω sin(q1z)

∆k2‖

 −ky sin(kxx) cos(kyy)
kx cos(kxx) sin(kyy)

0


(2.50)

We now take as convention for the orientation of µ

µ = |µ|

 sin(Ψ) cos(φ)
sin(Ψ) sin(φ)

cos(Ψ)

 (2.51)

where φ and Ψ are Euler angles. We then have:

|E · µ|2 =
4|µ|2|1−R12|2|1−R23|2 sin2(q1z)µ2

0ω
2|U3|2 sin2(Ψ)

|∆|2k4‖
× (k2y cos2(φ) sin2(kxx) cos2(kyy) + k2x sin2(φ) cos2(kxx) sin2(kyy)). (2.52)

Inserting Eq. (2.48),

|E · µ|2 =
4|µ|2|1−R12|2|1−R23|2 sin2(q1z)ω~ sin2(Ψ)

|∆|2k2‖V ε0
×
[
k2y cos2(φ) sin2(kxx) cos2(kyy) + k2x sin2(φ) cos2(kxx) sin2(kyy)

]
. (2.53)
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We now take an average value on x and y, as well as on φ

〈|E · µ|2〉x,y,φ =
|µ|2|1−R12|2|1−R23|2 sin2(q1z)ω~ sin2(Ψ)

2|∆|2V ε0
(2.54)

Finally, using the desexcitation rule (1.55), one has:

P TE
i→f =

sin2(Ψ)|µ|2ω2µ0t

2π~

∫ k

0

dkz
|1−R12|2|1−R23|2 sin2(q1z)

|∆|2
(2.55)

2.1.2 Transverse magnetic modes

In this section, we compute the desexcitation rate induced by transverse
magnetic modes. To this end, we use continuity equations, expliciting the
structure of the TM modes, before normalising the amplitude to make the
energy of those modes equal to the vacuum electromagnetic energy.

Continuity and characteristic equations

In this section, we use Maxwell equations in the case of the TM modes to
derive the spatial dependence of the electric �eld. To this end, we set the
continuity equations of the system. One has, for those modes, as e.g. in[23],

Ez = ψ, (2.56)

Et =
∂

k2‖∂z

(
∂Ez
∂x
∂Ez
∂y

)
, Ht =

−iεω
k2‖

(
∂Ez
∂y

−∂Ez
∂x

)
. (2.57)

In z = 0 and z = Lz + h + d stand perfect mirrors: Et has to vanish for
those conditions. On the transverse walls, Ez has to do so; ψ has thus the
following form

ψ1 = C1 cos(q1z) sin(kxx) sin(kyy) (2.58)

ψ2 = (U2e
iq2(z−h) +D2, e

−iq2(z−h)) sin(kxx) sin(kyy) (2.59)

ψ3 = U3(e
iq3(z−h−d) + e2iq3Lz , e−iq3(z−h−d)) sin(kxx) sin(kyy). (2.60)

The transverse components of each �eld have to be continuous at each in-
terface between two media. Thus, for the electrical �eld to have continuous
components in the transverse directions, thefunction ψ has to satisfy[

∂ψ

∂z

]+
−

= 0 (2.61)
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at each interface. For the transverse components of the magnetical �eld, this
yields

[εψ]+− = 0. (2.62)

We now develop those transition conditions between the second and the third
region

ε2(U2e
iq2d +D2e

−iq2d) = ε0U3(1 + e2iq3Lz) (2.63)

iq2(U2e
iq2d −D2e

−iq2d) = iq3U3(1− e2iq3Lz) (2.64)

Excluding the e2iq3Lz term, one gets

U2e
iq2d +

ε2q3 − ε0q2
ε2q3 + ε0q2

D2e
−iq2d) = 2

ε0q3
ε2q3 + ε0q2

U3 (2.65)

We now de�ne the re�exion coe�cients as

r12 =
ε2q1 − ε1q2
ε2q1 + ε1q2

, r23 =
ε0q2 − ε2q3
ε0q2 + ε2q3

, (2.66)

So that

e2iq2dU2 − r23D2 =
ε0(1− r23)eiq2dU3

ε2
(2.67)

We now consider the transition conditions between regions 1 and 2

ε1C1 cos(q1h) = ε2(U2 +D2) (2.68)

−q1C1 sin(q1h) = iq2(U2 −D2) (2.69)

Excluding C1, it comes

q1 sin(q1h)ε2(U2 +D2) + iε1 cos(q1h)q2(U2 −D2) = 0 (2.70)

Afeter some algebra,(
ε2q1 − ε1q2
ε2q1 + ε1q2

e2iq1h − 1

)
U2 +

(
e2iq1h − ε2q1 − ε1q2

ε2q1 + ε1q2

)
D2 = 0 (2.71)

Inserting (2.66) in (2.71), it comes(
r12e

2iq1h − 1
)
U2 +

(
e2iq1h − r12

)
D2 = 0 (2.72)

Eqs. (2.67) and (2.72) can be rewritten as(
e2iq2d −r23

r12e
2iq1h − 1 e2iq1h − r12

)(
U2

D2

)
=

(
ε0(1−r23)eiq2dU3

ε2

0

)
(2.73)
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We then de�ne δ as

δ =

∣∣∣∣ e2iq2d −r23
r12e

2iq1h − 1 e2iq1h − r12

∣∣∣∣ (2.74)

δ = e2i(q1h+q2d) + r12(r23e
2iq1h − e2iq2d)− r23 (2.75)

U2 and D2 thus yield

U2 =
ε0(1− r23)eiq2dU3(e

2iq1h − r12)
ε2δ

(2.76)

D2 = −ε0(1− r23)e
iq2dU3(r12e

2iq1h − 1)

ε2δ
(2.77)

Knowing U2 and D2, we can use Eq. (2.68):

ε1C1 cos(q1h) =
ε0(1− r23)eiq2dU3

δ

[
e2iq1h − r12 − (r12e

2iq1h − 1)

]
(2.78)

After some calculations, it comes

C1 =
2ε0(1− r23)ei(q1h+q2d)(1− r12)U3

ε1δ
(2.79)

Injecting the equations (2.76) and (2.77) in (2.63), one has

(1− r23)eiq2dU3(e
2iq1h − r12)

δ
eiq2d

− (1− r23)eiq2dU3(r12e
2iq1h − 1)

δ
e−iq2d = U3(1 + e2iq3Lz) (2.80)

Finally, using Eq. (2.75)

δe2iq3Lz = −r23e2i(q1h+q2d) + r12r23e
2iq2d − r12e2iq1h + 1 (2.81)

This is the characteristic equation for the TM modes. A completely equiva-
lent expression, using trigonometric functions yields

tan(q1h) tan(q2d) tan(q3Lz)

=
q2
ε2

(
ε0ε1q2 tan(q2d)

ε2q1q3
+
ε0 tan(q1h)

q3
+
ε1 tan(q3Lz)

q1

)
(2.82)

A discussion about its properties will take place in chapter 4.
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Normalisation

In this section, we normalise the amplitude of the electromagnetic modes so
that their energy will be the one of the vacuum. To this end, we derive an
expression for the TM modes in the third region, making the assumption
that all the energy is in. We now normalise U3, taking the total energy of
the system into account. We have:

Ek =


∂2ψi
k2‖∂x∂z

∂2ψi
k‖∂y∂z

ψi

 Hk =
εiω

ik2‖

 ∂ψi
∂y

−∂ψi
∂x

0

 (2.83)

where i ∈ {1, 2, 3} is the number of the region in which the �eld is being
expressed. The total electromagnetic energy of the system is:

W =

∫ Lx

0

dx

∫ Ly

0

dy

∫ Lz

0

dz

(
ε|E|2 + µ0|H|2

2

)
(2.84)

As the region 3 is arbitrarly large, we consider that all the energy is in:

W =

∫ Lx

0

dx

∫ Ly

0

dy

∫ Lz

h+d

dz

(
ε0|E|2 + µ0|H|2

2

)
(2.85)

We now have to calculate the electrical �eld in the third region. First, we
inject Eq. (2.60) in (2.83)

Ek = U3


iq3kx(eiq3(z−h−d)−e2iq3Lz e−iq3(z−h−d)) cos(kxx) sin(kyy)

k2‖
iq3ky(eiq3(z−h−d)−e2iq3Lz e−iq3(z−h−d)) sin(kxx) cos(kyy)

k2‖

(eiq3(z−h−d) + e2iq3Lze−iq3(z−h−d)) sin(kxx) sin(kyy)

 (2.86)

It comes

|E|2

|U3|2
=
q23
k4‖
|eiq3(z−h−d) − e2iq3Lze−iq3(z−h−d)|2

(
k2y sin2(kxx) cos2(kyy)

+k2x cos2(kxx) sin2(kyy)
)
+|eiq3(z−h−d)+e2iq3Lze−iq3(z−h−d)|2 cos2(kxx) cos2(kyy)

(2.87)

We now derive an expression for |H|2 in the third region, using the same
method.

Hk =
ε0ωU3(e

iq3(z−h−d) + e2iq3Lze−iq3(z−h−d))

ik2‖

 ky sin(kxx) cos(kyy)
−kx cos(kxx) sin(kyy)

0


(2.88)
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It comes

|H|2

|U3|2
=
ε20ω

2|eiq3(z−h−d) + e2iq3Lze−iq3(z−h−d)|2

k4‖
(k2y sin2(kxx) cos2(kyy)

+ k2x cos2(kxx) sin2(kyy)) (2.89)

Taking a mean value for the terms oscillating with spatial coordiantes, one
gets 〈

ε0|E|2 + µ0|H|2

2

〉
x

=
ε20µ0ω

2|U3|2

2k2‖
(2.90)

We then have

W =
V ε20µ0ω

2|U3|2

2k2‖
(2.91)

We want this energy to be equal to the energy of the vacuum ~ω
2
. This gives

us:

|U3|2 =
~k2‖

V ε20µ0ω
(2.92)

Transition probability induced by the TM modes

We are now in position to compute the transition probability induced by the
TM modes. To this end, we compute |µ ·E|2 in the �rst region, before using
Eq. (1.55). We thus have assumed that the density of modes is identical as
the one of the vacuum case.

First, we compute the electrical �eld in the �rst region, using Eq. (2.83)

Ek = C1


−ikxq1 sin(q1z) cos(kxx) sin(kyy)

k2‖
−ikyq1 sin(q1z) sin(kxx) cos(kyy)

k2‖

cos(q1z) sin(kxx) sin(kyy)

 (2.93)

Inserting (2.79), it comes

Ek =
2ε0(1− r23)ei(q1h+q2d)(1− r12)U3

ε1δ


−ikxq1 sin(q1z) cos(kxx) sin(kyy)

k2‖
−ikyq1 sin(q1z) sin(kxx) cos(kyy)

k2‖

cos(q1z) sin(kxx) sin(kyy)


(2.94)

We now take as convention for the orientation of µ

µ = |µ|

 sin(Ψ) cos(φ)
sin(Ψ) sin(φ)

cos(Ψ)

 (2.95)
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where Φ and Ψ are Euler angles. We then have:

|Ek · µ|2 =
4|µ|2|1− r12|2|1− r23|2|U3|2

n4
1|δ|2

((
q21 sin2(Ψ) sin2(q1z)

k4‖

)
×
(
k2x cos2(kxx) sin2(kyy) cos2(φ) + k2y sin2(kxx) cos2(kyy) sin2(φ)

)
+ cos2(q1z) sin2(kxx) sin2(kyy) cos2(Ψ)

)
(2.96)

Inserting Eq. (2.92)

|Ek · µ|2 =
4|µ|2|1− r12|2|1− r23|2~

n4
1V ε

2
0µ0ω|δ|2

((
q21 sin2(Ψ) sin2(q1z)

k2‖

)
×
(
k2x cos2(kxx) sin2(kyy) cos2(φ) + k2y sin2(kxx) cos2(kyy) sin2(φ)

)
+ k2‖ cos2(q1z) sin2(kxx) sin2(kyy) cos2(Ψ)

)
(2.97)

We now take an average value on x, y and φ

〈
|Ek · µ|2

〉
x,y,φ

=
|µ|2|1− r12|2|1− r23|2~

n4
1V ε

2
0µ0ω|δ|2

((
q21 sin2(Ψ) sin2(q1z)

2

)

+ k2‖ cos2(q1z) sin2(kxx) sin2(kyy) cos2(Ψ)

)
(2.98)

Finally, using the desexcitation rule (1.55), one has:

P TM
i→f =

|µ|2t
ε0π~n4

1

∫ k

0

dkz
|1− r12|2|1− r23|2

|δ|2

(
q21 sin2(Ψ) sin2(q1z)

2

+ k2‖ cos2(q1z) cos2(Ψ)

)
(2.99)

2.2 Transition probability

The sum of both types of electromagnetic modes gives:

Pi→f =
|µ|2t
π~

(
sin2(Ψ)ω2µ0

2

∫ k

0

dkz
|1−R12|2|1−R23|2 sin2(q1z)

|∆|2

+
1

ε0n4
1

∫ k

0

dkz
|1− r12|2|1− r23|2

|δ|2

(
q21 sin2(Ψ) sin2(q1z)

2
+ k2‖ cos2(q1z) cos2(Ψ)

))
(2.100)
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We now use Eq. (1.73) to normalise this result

Pi→f = 3Γ1t

(
sin2(Ψ)

2ω
√
µ0ε1

∫ k

0

dkz
|1−R12|2|1−R23|2 sin2(q1z)

|∆|2

+
1

n4
1ω

3µ
3/2
0 ε0
√
ε1

∫ k

0

dkz
|1− r12|2|1− r23|2

|δ|2

(
q21 sin2(q1z)

2
sin2(Ψ) + k2‖ cos2(q1z) cos2(Ψ)

))
(2.101)

Equivalently, with k = ω
c
:

Pi→f = 3Γ1t

(
sin2(Ψ)

2n1k

∫ k

0

dkz
|1−R12|2|1−R23|2 sin2(q1z)

|∆|2

+
1

n5
1k

3

∫ k

0

dkz
|1− r12|2|1− r23|2

|δ|2

(
q21 sin2(q1z) sin2(Ψ)

2
+ k2‖ cos2(q1z) cos2(Ψ)

))
(2.102)

We now de�ne the relative transition rate as

Γr =
Pi→f
Γ1t

(2.103)

Two particular cases can be expressed:

• Γ⊥, expressing the desexcitation rate of an exciton whose dipole is
oriented in the direction z. In this case, Ψ = 0

• Γ‖, expressing the desexcitation rate of an exciton whose dipole is trans-
verse to the plane (x, y). In this case, Ψ = π/2

Thus,

Γ⊥ =
3

n5
1k

3

∫ k

0

dkz
|1− r12|2|1− r23|2

|δ|2
k2‖ cos2(q1z) (2.104)

Γ‖ =
3

2n1k

(∫ k

0

dkz
|1−R12|2|1−R23|2 sin2(q1z)

|∆|2

+
1

n4
1k

2

∫ k

0

dkz
|1− r12|2|1− r23|2q21 sin2(q1z)

|δ|2

)
(2.105)

Another important result can be expressed by taking a mean value along the
possible orientations of the dipole for the desexcitation rate. As directions
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x and y correspond to Ψ = π/2 and direction z corresponds to Ψ = 0, the
mean desexcitation rate can be expressed as

Γr =
Γ⊥
3

+
2Γ‖
3
. (2.106)

Injecting Eqs. (2.104) and (2.105) in Eq. (2.106), it comes

Γr =
1

n1k

[∫ k

0

dkz
|1−R12|2|1−R23|2 sin2(q1z)

|∆|2

+
1

n4
1k

2

∫ k

0

dkz
|1− r12|2|1− r23|2

|δ|2
(
q21 sin2(q1z) + k2‖ cos2(q1z)

)]
(2.107)



Chapter 3

Numerical simulations

In this chapter, we set a range of the parameters of the solar cell, before
computing equations (2.107), (2.105) and (2.104).

3.1 Parameters range

We used for the refractive index of region 2 the one of the Gallium doped
Zinc oxide, a conducting, optically transparent material, suitable for PV
technology [22]. Its value is [24] :

n2 = 2. (3.1)

The wavevector and real refractive index of the polymer are taken from [11],
supposing a zero extinction coe�cient

n1 = 1.6 k =
2π

600nm
=

π

300
nm−1 (3.2)

The parameters h and d can then be optimised around their typical values:
those of thin �lm solar cells

h ≈ 100nm d ≈ 5nm (3.3)

3.2 Simulations

3.2.1 Reference case

We plotted the equations (2.107), (2.105) and (2.104) using Mathematica
7.0, for the reference case, chosen to have h = 100nm and d = 5nm. Fig.
3.2 represents the mean decay probability as a function of the position in the

39
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Figure 3.1: Decay probability as a function of the position in nanometers in
the active region for the parameters: n1 = 1.6, n2 = 2, h = 100nm, d = 5nm,
k = π

300
nm−1. Full line: Ψ = 0. Dashed line: Ψ = π/2
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Figure 3.2: Mean decay probability (Eq. (2.107)) as a function of the position
in nanometers in the active region for the parameters: n1 = 1.6, n2 = 2,
h = 100nm, d = 5nm, k = π

300
nm−1

active region (Eq. (2.107)). In Fig. 3.1 the desexcitation rate is splitted in its
two components, which are described by the equations (2.104) and (2.105).

In Fig. (3.1), one notices that Γ⊥ is much smaller than Γ‖ in the biggest
part of the active region.

3.2.2 Modi�cation of the active region length

To begin with, we made the distance h smaller. We chose its value to be
30nm. Fig 3.4 shows the mean spontaneous emission rate, whereas Fig. 3.3
displays Eqs. (2.104) and (2.105) for the same parameters.
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Figure 3.3: Decay probability as a function of the position in nanometers in
the active region for the parameters: n1 = 1.6, n2 = 2, h = 30nm, d = 5nm,
k = π

300
nm−1. Full line: Ψ = 0. Dashed line: Ψ = π/2
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Figure 3.4: Mean decay probability (Eq. (2.107)) as a function of the position
in nanometers in the active region for the parameters: n1 = 1.6, n2 = 2,
h = 30nm, d = 5nm, k = π

300
nm−1

To compare those results, we have chosen to plot many curves for h
varying from 30 to 100 nanometers. This is shown Fig. 3.5, for the 30
nanometers closest to the collecting electrode.
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Decreasing h
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Figure 3.5: Mean decay rate as a function of z, for di�erent values of h,
between 30 and 100nm. All other parameters identical to those of Fig. 3.2

This reduction has a small but visible e�ect on the desexcitation close to
the collecting electrode: the thinner the active region, the smaller the desex-
citation rate. A compromise has then to be made between the generation of
excitons, varying as the thickness does, and the desexcitation of those exci-
tons. However, the �thin� geometry is often prefered because of the di�usion
length of the excitons: the excitons are created near the electrode, so that
they immediately can recombine.

3.2.3 Modi�cation of the semitransparent electrode thick-

ness

We now make the semitransparent electrode thicker: we chosen its value to
be d = 20nm. In Fig. 3.7 stands a plot of Eq. (2.107), in Fig. 3.1 stand
plots of Eqs. (2.105) and (2.104).

As we did for the reduction of the length of the active region, we compared
the mean desexcitation rate for di�erent values of d. In this case, we chose
to make d change from 2 to 25 nm. This is plotted in Fig. 3.8.

One remarks that e�ects of reducting the electrode thickness are not
as surprising as the active region reduction e�ects were. However, we also
remark that the thicker the electrode the larger the desexcitation rate. In
practice, the electrode has to be thick enough to provide conductivity[22].
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Figure 3.6: Decay probability as a function of the position in nanometers
in the active region for the parameters: n1 = 1.6, n2 = 2, h = 100nm,
d = 20nm, k = π

300
nm−1. Full line: Ψ = 0. Dashed line: Ψ = π/2
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Figure 3.7: Mean decay probability (Eq. (2.107)) as a function of the position
in nanometers in the active region for the parameters: n1 = 1.6, n2 = 2,
h = 100nm, d = 20nm, k = π

300
nm−1
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Increasing d
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Figure 3.8: Mean decay rate as a function of z, for di�erent values of d,
between 2 and 25nm. All other parameters identical to those of Fig. 3.2.



Chapter 4

Discussion

In this chapter, we discuss the equations (2.36) and (2.81), before proposing
ways to improve PV devices.

4.1 Characteristic equations 2.36 and 2.81

In this section, we discuss the characteristic equations (2.36) and (2.81).
Those equations can be regarded as equations describing the possible states
of the system. This is an important part of the treatment, which has actually
not been done in the preceeding sections. Eqs. (2.36) and (2.81) can be
rewritten as

∆e2iq3Lz −R23e
2i(q1h+q2d) −R23R12e

2iq2d − e2iq1hR12 − 1 = 0, (4.1)

δe2iq3Lz + r23e
2i(q1h+q2d) − r12r23e2iq2d + r12e

2iq1h − 1 = 0. (4.2)

One can then plot the modulus of the left hand side of each equation versus
the wavenumber kz, varying between 0 and k, for di�erent values of Lz.
Figure 4.1 displays this method applied to Eq. (4.1), and Fig. 4.2 displays
this method applied to Eq. (4.2).

As the possible states of the system are the solutions of the characteristic
equations, they correspond in Figs. 4.1 and 4.2 to intersections of the curves
with the absciss axis. For the sake of readability, only two values for Lz
have been taken into account in those �gures, but other simulations tend to
con�rm the depicted inclination: the bigger Lz, the more solutions to Eqs.
(4.1) and (4.2) there is.
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Figure 4.1: |∆e2iq3Lz − R23e
2i(q1h+q2d) − R23R12e

2iq2d − e2iq1hR12 − 1| versus
kz. Full: Lz = 1000. Dashed: Lz = 10000
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Figure 4.2: |δe2iq3Lz + r23e
2i(q1h+q2d) − r12r23e2iq2d + r12e

2iq1h − 1| versus kz.
Full: Lz = 1000. Dashed: Lz = 10000

By choosing the approach developped in this work, we thus assumed that:

• As Lz tends to in�nity, the number of solution of Eqs. of the variable
kz (4.1) and (4.2) does so and

• The density of solutions in kz is in this case uniform in the interval
[0, k].

Numerical simulations tend to con�rm those assumptions.
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4.2 Ways to improve PV devices

The results of the work done here will be useable as soon as a reliable pho-
tovoltaic polymer presenting a high quantum yield is available. When its
parameters will be known, this model will allow a computation of the desex-
citation rate in the solar cell. The approach developped in this work is also
applied to a particularly simple Fabry-Pérot type geometry: it surely can be
interesting to extand the treatment we made to some other structures.

Conclusion

In order to enhance PV cell conversion e�ciency, we presented in this work
a theoretical model based on Fermi Golden Rule to compute the sponta-
neous emission rate in a PV cell as a function of its dielectric and geometric
parameters.

We modelled an exciton as the upper energy state of a two-level system
to �rst make the two-level system evolve in vacuum. Then, we perturbed
this system by adding an interaction with an electromagnetic �eld. This
electromagnetic �eld was further described as the vacuum �uctuations of a
cavity. Therewith, we derived an evolution law in vacuum, before extending
it to an homogeneous dielectric medium.

We then modelled a PV cell as a superposition of three dielectric media,
containing a two-level system in its excited state in the �rst of those. We
then derived an evolution law for this system, following the approach we
followed in the vacuum case.

Although the results we presented were not coupled to the di�usion equa-
tion (1.5) and/or current equations, they are quite encouraging. Indeed, the
spontaneous emission rate can, in some cases (see e.g. Fig. 3.4) be reduced
to 10% of the free space value.

However, a reduction of 90% of spontaneous emission rate induces, for a
polymer presenting a quantum yield close to 1, �only� an increase of di�usion
length up to

L =

√
D

ΓrΓ1

=
1√
Γr

√
D

Γ1

. (4.3)

By denoting L1 the di�usion length in an homogeneous dielectric medium of
permittivity ε1, one has

L =
L1√
Γr
≈ 3.16L1 (4.4)

So an enlegthment is not as impressive as the �90% reduction in sponta-
neous emission� are, but it is a great advance.
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However, the model we developed still has to be checked, experimentally
and theoretically. From an experimental point of view, this work can also
be seen as a motivation for chemists to develop a high quantum yield PV
polymer.

From a theoretical point of view, this model can be developed by e.g. con-
sidering a �nite bandwidth for the exciton desexcitation, de�ning a quality
factor of the PV cell such as an optimisation of the dielectric and geometrical
parameters would be mathematically determinable, extending this method
to other geometries, taking into account the imaginary part of refractive
indexes. . .

This model can also be checked, using a fully quantised model, or simpli-
�ed, using classical electrodynamics theory.
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