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We theoretically investigate a weakly birefringent all-fiber
cavity subject to linearly polarized optical injection. We de-
scribe the propagation of light inside the cavity using, for
each linear polarization component of the electric field,
the Lugiato–Lefever model. These two components are
coupled by cross-phase modulation. We show that, for a
wide range of parameters, there is a coexistence between a
homogeneous steady state and two different types of tempo-
ral vector cavity solitons, which can be hosted in the same
system. They differ by their polarization state and peak in-
tensity. We construct their bifurcation diagram and show
that they are connected through a saddle-node bifurcation.
Finally, we show that vector cavity solitons exhibit multi-
stability involving different polarization states with different
energies. © 2017 Optical Society of America
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Driven optical cavities filled with Kerr media are basic configu-
rations in nonlinear optics. They support temporal cavity sol-
itons (CSs) in the form of short optical pulses propagating
along the cavity. They are also called localized structures and
have been theoretically predicted in Ref. [1] and experimentally
observed in Ref. [2]. They arise due to modulation instability
(MI) [3]. The best-known types of MIs are Benjamin–Feir [4],
Faraday [5], and Turing [6] instabilities. Other types of
instabilities giving rise to pulse trains include the dissipative
parametric instability [7] and vector resonance multimode in-
stability [8]. The formation of CSs and their connections to
optical comb generation have been established [9,10].

Today, there is an increasing interest in the polarization
properties of CSs. Vector CSs have a nontrivial polarization
state. Fiber cavities have been shown to be able to host two

types of vector CSs: (i) group velocity-locked vector solitons
(GVLVS) [11,12], where the polarization degree of freedom
allows vector CSs to have an evolving polarization state, draw-
ing orbits on the Poincaré sphere, and (ii) polarization locked
vector soliton (PLVS), where the CS preserves its polarization
state under the effect of birefringence. PLVSs have been theo-
retically predicted by Akhmediev [13] and experimentally
observed in Refs. [14–16]. Both GVLVS and PLVS can be gen-
erated in fiber-laser-based devices [17].

In this Letter, we theoretically show the existence of differ-
ent PLVSs in a weakly birefringent all-fiber cavity. The resulting
vector CSs do not only differ by their polarization state, but
also by the energy they carry. In addition, we show that these
two different types of vector CSs can coexist for the same fixed
parameter values. We show also that they are connected
through a saddle-node bifurcation. Finally, we numerically con-
struct their bifurcation diagram.

We consider a weakly birefringent optical fiber cavity sub-
mitted to coherent optical pumping, and place ourselves in a
power regime where Brillouin and Raman scatterings are ne-
glectable. In that framework, the propagation of light inside
the cavity is governed by the following set of coupled nonlinear
Schrödinger equations, written in a reference frame moving
with the group velocity of the light:
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In these equations, Ax (Ay) is the slowly varying electric
field envelope polarized along the slow (fast) axis of the bire-
fringent fiber. A�

x and A�
y are their complex conjugates. z is the

longitudinal coordinate. k 0 00 is the second-order dispersion co-
efficient, and γ is a nonlinear term that accounts for the Kerr
effect, crossed-phase modulation, and four-wave mixing. Δβ
corresponds to the wavenumber mismatch between the two
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orthogonal polarization components, and is defined as
Δβ � 2πjnx − nyj∕λ.

Integration of the propagation equations over the length of
the ring cavity L yields
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A typical cavity length for CS generation is roughly 400 m
long [2], while weakly birefringent fibers have Δβ ≈ 1 m−1

[18], which means that there is a difference of at least two or-
ders of magnitude between the Kerr crossed-phase modulation
terms, and the four-wave mixing term. We therefore neglect
four-wave mixing for the rest of this communication.

The light circulating within the cavity further undergoes co-
herent superposition with the input field at the coupling beam
splitter. This is described by the following cavity boundary con-
ditions, connecting the slowly varying amplitudes of the light
after n passes Ax;y;n with those after n� 1 passes:

Ax;y;n�1�0; τ� � TAIx;y � Re−iδx;yAx;y;n�L; τ�: (2)

T and R are the transmission and reflexion coefficients at
the coupling beam splitter, AIx;y are the linear components
of the optical injection along the slow and fast axes of the bi-
refringent fiber, and the coefficients δx;y account for the phase
difference between the injection field and the light that propa-
gated over the whole length of the fiber.

Equations (1) and (2) constitute an infinite dimensional
map that can be simplified using a mean field approximation.
To do so, we further assume a high-finesse cavity T ≪ 1.
We further assume δx;y ≪ 1 ≫ γLjAx;yj2. We also set the
second-order dispersion characteristic length to be much
longer than the cavity size. The last step of the derivation of
the model consists of introducing the continuous limit as
	An�1�z � 0� − An�z � 0�
∕tr � ∂A∕∂t 0, where tr is the cav-
ity round-trip time. Under these approximations, the vectorial
Lugiato-Lefever model reads
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Here, Ex;y are the slowly varying electric field envelopes po-
larized in the slow and fast axis, respectively. The holding beam
EI is real and positive to fix the origin of the phase, with Ψ its
linear polarization direction with respect to slow-axis orienta-
tion. The detunings between the frequency of the holding
beam and the cavity resonances for each polarization direction
are θx and θy. The second-order chromatic dispersion coeffi-
cient is β2, considered to be the same for slow- and fast-axis
polarization directions. The time t is the slow time, which is
proportional to round-trip time. It describes the evolution of
field envelope from one cavity round-trip to another. The fast

time τ places us in the moving frame with the group velocity of
the light propagating in the cavity. These quantities are related
to the physical variables via the renormalizations t � t 0T 2∕2tr ,
EIx;y � 2

ffiffiffi
γ

p
AIx;y∕T , θx;y � 2δx;y∕T 2, β2 � −2Lk 0 00 ∕T 2, and

Ex;y � ffiffiffi
γ

p
Ax;y. Note that a similar model has been described

in Ref. [19].
The homogeneous steady states (HSSs) satisfying

∂2Ex;y∕∂τ2 � ∂Ex;y∕∂t of Eq. (3b) in terms of a total intensity
jE j2 � jExj2 � jEyj2 as a function of the injected field ampli-
tude EI are plotted in Fig. 1 for three different values of the
detuning parameter θx. Three branches of solutions corre-
sponding to the positive slope are stable (∂jE j2∕∂EI > 0).
The red curves with a negative slope (∂jE j2∕∂EI < 0) are
plane-wave unstable. From Fig. 1, we see that when increasing
θx , the width of the hysteresis loop involving two stable HSSs
(delimited by the limit points C and D) decreases. The bistable
regions A–B and C–D move to higher and lower injection
strengths, respectively. However, when performing a standard
linear stability analysis of the HSSs with respect to finite fre-
quency perturbation of the form exp�iωτ� σt�, the upper
branches (in blue) are modulationally unstable.

A summary of the linear stability analysis is provided in the
parameters plane �EI ; θx� of Fig. 2. The black and blue (dark
gray) regions correspond to areas in which the system admits a
stable HSS and a MI unstable state, respectively. Green (light
gray) represents the coexistence of a stable HSS and a MI un-
stable state, and red (gray) the coexistence of two MI unstable
states. Finally, the white area represents the coexistence of a
stable HSS and two MI unstable states.

Polarization instability in an optically injected isotropic
nonlinear cavity has been considered already in 1994 in
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Fig. 1. (a)–(c) Intracavity field intensity as a function of EI . Red +
denotes linearly unstable states, yellow ° denotes linearly stable states,
and blue × denotes MI unstable states. A and B denote the lower and
higher limits of the first hysteresis, whereas C and D denote the lower
and higher limits of the second hysteresis. (d) Ellipticity of the different
HSSs as a function of the optical injection field. Parameters are β2 � 1,
ψ � π∕4, θy � 4.3, θx � 2 (a), θx � 2.5(b), and θx � 3 (c and d).
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Ref. [20]. For a linearly polarized optical injection, a pitchfork
bifurcation between two circularly polarized branches of differ-
ent handednesses has been found, and MI regions for both nor-
mal and anomalous dispersion regime have been determined.
In our case, the cavity is weakly birefringent, and polarization
multistability is observed between branches with different ellip-
ticities, as illustrated in Fig. 1(d). Moreover, in Ref. [20] no CS
operation has been considered. We show below that polariza-
tion multistability gives rise to a coexistence of PLVSs with dif-
ferent elliptical polarization states. Coexistence of MI of modes
with different transverse profiles in the form of a mixed mode in
a whispering-gallery-mode resonator has been demonstrated
in Ref. [21].

When a stable HSS and a periodic train of pulses coexist due
the subcritical nature of MI bifurcations, it is often possible to
generate cavity solitons in a finite range of parameters called a
pinning zone. This mechanism has been established for the sca-
lar Lugiato–Lefever equation in Ref. [1]. When the polarization
degree of freedom is taken into account, there are two different
MI patterns coexisting with a stable state, as indicated in the
white area of the map (cf. Fig. 2). We hence can expect that the
system can generate two kinds of CSs for the values of param-
eters in the white area. Indeed, the numerical simulation of
Eq. (3b) with periodic boundary conditions along the τ coor-
dinate reveals the occurrence of two types of CSs, as shown in
Fig. 3. They are presented as a function of the Stokes param-
eters, defined as S0 � jExj2 � jEyj2, S1 � jExj2 − jEyj2,
S2 � E�

x Ey � ExE�
y , S3 � i�E�

x Ey − ExE�
y �. The initial condi-

tion used is that of a homogeneous background on which two
hard perturbations with different polarization properties have
been added in the vicinity of τ � 8 and τ � 30. As can be seen
from Fig. 3, there are three distinct regions around τ � 8 and
τ � 30: two CSs labelled A and B, and, in between the back-
ground. The CS labelled A has the higher intensity (S0 param-
eter), and hence corresponds to the brightest pulse. Next to its
maximum value is represented its polarization state, which is an
ellipse. The parameters of this ellipse have been calculated at
the maximum value of S0. Two other ellipses have been drawn
on this graph. The lower (unmarked) one represents the polari-
zation state of the background, whereas B corresponds to the
maximum of the second CS. The difference between their
polarization states can be evidenced by looking at their

Stokes parameters: at its maximum intensity, CS A has a neg-
ative S1 and a positive S2, whereas CS B has a positive S1 and a
negative S2. Both of these structures have a large negative S3
(slightly different between CSs A and B). This indicates a large
right-handed circular component. The fact that their polariza-
tion states differ distinguishes these structures from the ones
presented in Ref. [22]. Indeed, in this work, the authors ob-
served a tristability that arises from a multivalued stationary
state for an Ikeda map. However, this dynamic is not captured
by the scalar Lugiato–Lefever model. They do not consider the
polarization degree of freedom.

We are interested in the situation where two stable CSs sol-
utions coexist with different polarization and different peak
intensities and can connect to each other. We fix the detuning
parameters and we vary the amplitude of the injected field. Two
CS solutions with different intensity peaks and different polari-
zation states are generated as shown in Figs. 4(a) and 4(b). For
EI0 < EI < EI1, only the CS with smaller intensity is stable, as
shown in Fig. 4(c). In this figure, we plot the “energy” or nor-
malized number of photons N 0 �

R
tr
�jE j2 − jE0j2�dτ as a

function of Ei with jE0j2 being the HSS intensity. In this re-
gime, an unstable branch of CSs of type B emerges from the
HSSs (dashed curve), and at the turning point EI � EI0 it be-
comes stable (continuous curve). These solutions are found by
using appropriate initial conditions and are then continued in
parameter space using the Newton method. Periodic boundary
conditions are used. When increasing the injected field ampli-
tude, the CS of type B is stable until it reaches the saddle-node
bifurcation at EI � EI2, where the slope becomes infinite.
Afterwards, by decreasing Ei, the CS type B begins to grow,
and transition to CS of type A occurs through an unstable
branch (dotted line). The two types of CSs are connected
through double saddle-node bifurcation. There is then a finite
domain of the injected field EI1 < EI < EI2, where the intra-
cavity field exhibits a bistable behavior between the two types of
CSs, as shown in Fig. 4(c). When increasing the injected field
amplitude EI > EI2, only the CS of large intensity survives.

x

E
I

Fig. 2. Stability map of the HSSs in the parameter plane �EI ; θx�.
Black color corresponds to the region where the system allows a single
stable state, blue (dark gray) to a single MI unstable state, green (light
gray) to the coexistence of a stable state and a MI unstable state, red
(gray) to the coexistence of two MI unstable states, and white to the
coexistence of a stable state with two MI unstable states. The map has
been obtained from a linear stability analysis of Eq. (3b). Parameters
are the same as in Fig. 1.
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Fig. 3. Numerical simulation of Eq. (3b) after 500 units of time,
expressed as a function of the Stokes parameters of the output field.
On the upper-left plot (S0), LSs and the background have been
marked with their respective polarization ellipses. The τ step has been
fixed at 0.2, the time step has been fixed to 0.01. The τ integration has
been performed using a second-order finite difference method,
whereas the time integration has been performed using a Runge–
Kutta method of order 4. Parameters are EI � 2.54, θx � 2.75,
β2 � 1, θy � 4.3, and Ψ � π∕4.
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The intracavity field can host more than two types of CSs.
The system exhibits a high degree of multistability, and the bi-
furcation diagram becomes complex. An example of three-peak
solutions involving either type A or B or a mixed CS solution is
shown in Fig. 5. In this figure, the evolution of the “energy” or
normalized number of photons N � R

tr
jE j2dτ is plotted as a

function of EI . Insets represent the profile of the different
branches, with an arrow pointing to the corresponding branch.

As can be seen from this figure, our system not only displays
stable branches corresponding to CSs of type A and B, but also
mixed states containing structures of both types.

To conclude, we have investigated a weakly birefringent fi-
ber cavity subject to linearly polarized optical pumping. The
mean field approach has been used, leading to two coupled
Lugiato–Lefever models. A linear stability analysis has shown
that there exists a parameter domain in which two MI branches
coexist with a HSS. Numerical simulations of the vectorial
Lugiato–Lefever model have shown the existence of two stable
cavity solitons having different Stokes parameters, i.e., different
polarization properties, and different peak intensities. We have
characterized their formation by drawing their bifurcation dia-
gram. Numerical simulations involving several peaks have
shown the larger complexity of the bifurcation diagram.
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Numerical simulations have been performed with the same parameters
as in Fig. 3.
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of 0.001, for a total time of 100 units.
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