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A B S T R AC T

In this PhD thesis, we carry out experimental and theoretical studies of localized
structures in Vertical-Cavity Surface-Emitting Lasers (VCSELs), also called cavity
solitons. Such structures consist of bright peaks of light, localized in space that can
be switched on or off, in the plane transverse to the propagation of the beam. They
have notably been proposed for two applications: all-optical information process-
ing, and information storage. In the first part of this thesis, we report experimental
evidence of spontaneous formation of localized structures in an 80 µm diameter VC-
SEL biased above its lasing threshold and under optical injection. Such localized
structures are bistable with the injected beam power and the VCSEL current. We
experimentally investigate their formation for different frequency detunings between
the injected beam and the VCSEL. Then, we derive a modified-Swift-Hohenberg
equation to describe this system. We characterize localized structures by construct-
ing their snaking bifurcation diagram and by showing clustering behavior within the
pinning region of parameters.

In the second part of this thesis, we focus on the vectorial character of localized
structures generated in a broad-area VCSEL submitted to linearly polarized optical
injection. We provide the first experimental evidence of the vectorial nature of local-
ized structures generated in a broad area VCSEL: the polarization of the cavity soli-
ton is not the one of the optical injection as it acquires a distinct ellipticity. We explain
our experimental findings by considering the spin-flip carrier dynamics in the VCSEL
quantum well active medium. In a third part, we add a delayed optical feedback to
the modified Swift-Hohenberg equation derived in the first part. We show that the
delayed feedback induces a spontaneous motion of two-dimensional localized struc-
tures in an arbitrary direction in the transverse plane. We characterize moving cavity
solitons by estimating their threshold and calculating their velocity. This work is then
extended to the more general well-accepted VCSEL-mean field model.

In the last part of this thesis, we consider temporal localized structures gener-
ated in nonlinear fiber cavities. We show that when birefringence of a fiber cavity is
taken into account, several kinds of localized structures can be generated. These
structures differ by their polarization properties. We also describe a photonic crystal
fiber cavity by considering second, third and fourth order dispersion. We show that
third order dispersion breaks the inversion symmetry and allows localized structures
to drift with a constant speed. We have characterized their motion by estimating,
analytically and numerically, their linear and nonlinear velocity.
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R É S U M É

Dans cette thèse de doctorat, nous menons des investigations théoriques et expéri-
mentales relatives aux structures localisées dans des lasers à cavité verticale émet-
tant par la surface (VCSELs), aussi appelées solitons de cavité. Elles consistent en
des pics d’intensité lumineuse dans le plan transverse à la propagation du faisceau
lumineux. Ils ont été notoirement proposés pour deux applications : stockage tout
optique de l’information, et le traitement de l’information optique.

Dans la première partie de cette thèse, nous investigons les aspects théoriques
des structures localisées dans un VCSEL à grande surface d’émission soumis à
une injection optique et à un retour retardé. Nous dérivons une équation de Swift-
Hohenberg généralisée à retard, d’application lorsque le système est proche du
régime de bistabilité optique. En premier lieu, nous caractérisons les structures lo-
calisées stationnaires, en construisant leur diagramme de bifurcation en serpentage,
typique de leur regroupement dans la zone d’accrochage des paramètres. Ensuite,
nous montrons que le retour retardé peut induire un mouvement spontané de struc-
tures localisées à deux dimensions dans une direction arbitraire du plan transverse.
Nous caractérisons ces structures mobiles en estimant le seuil de ce mouvement,
ainsi que sa vitesse.

Dans la deuxième partie de cette thèse, nous rapportons la formation spontanée
de structures localisées dans un VCSEL de 80 micromètres de diamètre, pompé au
delà de son seuil d’émission laser, et soumis à une injection optique. Ces structures
sont bistables en la puissance du faisceau d’injection, ainsi qu’en le courant élec-
trique. Nous étudions expérimentalement leur formation pour différents décalages
en fréquence avec le faisceau de pompe optique. Nous rapportons la première
mesure expérimentale mettant en évidence le caractère vectoriel des structures lo-
calisées générées dans un laser à grande surface d’émission: la polarisation de la
structure localisée n’est pas celle de l’injection optique, dans la mesure où cette
dernière est elliptique. Nous apportons un éclairage théorique sur cette expéri-
ence, en prenant en compte la dynamique de retournement de spin propre aux VC-
SELs à puits quantique. Ces résultats laissent entrevoir la possibilité de multiplexer
l’information transmise en utilisant les propriétés de polarisation des structures local-
isées, utilisées comme pixels à la surface du VCSEL.
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S A M E N VAT T I N G

Dit doctoraatsonderzoek richt zich tot het experimenteel en theoretisch bestuderen
van gelokaliseerde structuren in Vertical-Cavity Surface-Emitting Lasers (VCSELs),
ook wel genaamd cavity solitons. Deze structuren bestaan uit pieken van licht,
gelokaliseerd in ruimte die in- of uitgeschakeld kunnen worden, in het vlak transver-
saal op de propagatie van de lichtstraal. De mogelijke toepassingen van deze struc-
turen bevinden zich voornamelijk in twee domeinen : all-optical image processing,
en information storage.

In het eerste deel van deze thesis bestuderen we op theoretische wijze gelokaliseerde
structuren in een broad area VCSEL, die voorzien worden van optische injectie
en vertraagde optische terugkoppeling. We leiden een algemene vertraagde Swift-
Hohenberg vergelijking af voor het VCSEL systeem, dewelke geldig is nabij ontluik-
ende optische bistabiliteit. We karakteriseren eerst de stationaire gelokaliseerde
structuren door hun bifurcatie diagram op te stellen en door het clusterend gedrag
aan te tonen in de pinning regio van de parameters. Vervolgens tonen we aan
dat de vetraagde terugkoppeling een spontane beweging teweegbrengt van tweed-
imensionele caviteit solitonen in een willekeurige richting in het transversaal vlak.
We karakteriseren de bewegende gelokaliseerde structuren door hun treshold in te
schatten en hun snelheid te berekenen.

In het tweede deel van deze thesis tonen we experimenteel de spontane vorm-
ing van gelokaliseerde structuren in een 80 mm diameter VCSEL met een instel-
stroom boven de lasing treshold en bij optische injectie. Zulke structuren zijn bista-
biel met het geinjecteerde vermogen van de laserstraal en de VCSEL stroom. We
onderzoeken experimenteel hun ontstaan bij verschillende frequentie verschuivin-
gen tussen de geinjecteerde straal en de VCSEL, en bij verschillende diameters van
de geinjecteerde straal. We leveren het eerste experimentele bewijs van de vecto-
riele aard van gelokaliseerde structuren in een broad area VCSEL: de polarisatie
van de gelocaliserde structuur stemt niet overeen met die van de optische injectie,
aangezien deze een andere ellipticiteit aanneemt. Onze experimentele resultaten
verklaren we door het spin-flip carrier dynamics in acht te nemen in het VCSEL
quantum well actieve medium. Deze resultaten tonen het potentieel aan voor polar-
isatie multiplexing door caviteit solitonen te gebruiken in broad-area lasers als pixels
in informatie technologie.
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1I N T RO D U C T I O N

In this thesis, we study spatially localized structures in Vertical-Cavity Surface-Emitting
Lasers (VCSELs). These structures belong to the class of dissipative structures that
can be found in systems far from thermodynamic equilibrium. A description of these
objects, and their link to optics is the subject of Sec. 1.1. A special emphasis on local-
ized structures generated in VCSELs is made in Sec. 1.2. In Sec. 1.3, we describe
polarization studies in two different self-organized systems. Finally, in section 1.4,
we present the plan of this thesis.

1.1 DISSIPATIVE STRUCTURES

In their seminal 1968 paper, Prigogine and Lefever derived a trimolecular model
(the Brusselator model), to describe the formation of dissipative structures far from
equilibrium. These periodic structures appear spontaneously in dissipative environe-
ments and are maintained thanks to a permanent exchange of matter and/or energy
with their surroundings [1, 2]. A classical example of such dissipative structures has
been first predicted by Turing [3]. Contrarly to the Rayleigh-Bénard instability in flu-
ids [4], where the size of the rolls is determined by the geometry of the system, the
Turing instability is characterized by an intrinsic wavelength which depends only on
the dynamical parameters of the system, such as diffusion coefficients and/or the
inverse characteristic times associated with chemical kinetics. The theoretical sup-
port of the thermodynamics theory of systems far from equilibrium, developed by
Prigogine, made the work of Turing popular. For this reason, it is worth renaming
such an instability a Turing-Prigogine instability.

More than several decades later, De Kepper and coworkers [5], as well as Ouyang
and Swinney [6], have demonstrated experimental evidence of dissipative structures
in Chlorite-Iodide-Malonic Acid reactions. An experimental evidence of pattern for-
mation provided by the authors of [5] is shown in Fig. 1.1. This experiment shows that
the pattern wavelength is roughly 0.2mm (as shown in Fig. 1.1c), which exceeds by
several orders of magnitude the size of molecules involved in the chemical reaction
set. The intrinsic character of the wavelength, predicted by Turing and Prigogine,
has been proved experimentally. Indeed, in this experiment, the wavelength mea-
sured experimentally is much smaller than the characteristic size of the reactor (its
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length is 100 times longer than the wavelength of the pattern). Note that the spatial
profile of the dissipative structures shown in Fig. 1.1c) is only a cross section in the
horizontal plane. The dissipative structures observed in this experiment are in fact
stationary three-dimensional dissipative structures. This is a universal phenomenon
leading to spontaneous appearence of a macroscopic order at an intrisic wavelength.
This phenomenon has been discussed and observed in almost all fields of natural
sciences, such as biology, chemistry, ecology, physics, fluid mechanics, and optics
(see a recent overview on this issue [7]).

Fig. 1.1: Turing self-organization in a chemical gel reactor. a): schematic of the experimental
setup. Both A and B are solutions that are kept at constant concentrations in their
different reactants through constant flow. The reactants enter the gel strip through
diffusion. The gel strip contains a color indicator for one of the products of the con-
sidered chemical reaction. (b) and (c) are photographs of the gel strip demonstrating
the appearance of a pattern with an intrinsic wavelength. Reproduced from [5].

In the above described experiment, the time needed to generate a chemical pat-
tern is of order of three hours and its wavelength is around 200µm. These time
and space scales are extremely long when being compared to the ones of nonlinear
optics and laser physics. By example, in a Vertical-Cavity Surface-Emitting Laser
(VCSEL), the dynamics of the system occur in the nanosecond range (the carrier
lifetime in a VCSEL cavity). As will be emphasized later in this work , the char-
acteristic scale of a Turing-Prigogine pattern at the surface of a VCSEL lies in the
micrometer range. This effect makes semiconductor microcavities very attractive
systems for applications of dissipative structures.

A Turing pattern has been first numerically observed in an optical system in 1983
(see Fig. 1.2). In that communication, the authors studied a ring cavity with a sat-
urable nonlinearity, submitted to optical injection. In Fig. 1.2, we reproduce their
numerical results on the evolution of the operator Gn, which describes the relation
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between the slowly varying electric field envelope after n roundtrips in the cavity
En, and the slowly varying electric field envelope after n + 1 roundtrips En+1, as
En+1 = GnEn. Later on, the authors have interpreted their results as a spatial
equivalent of a modulation instability [8]: this pattern formation is due to the high
transverse wavenumber instability, without any reference to the pattern formation in
chemical reactors.

Fig. 1.2: Numerical results obtained by the authors of [9], that describes the evolution of the
operator Gn (see text).Reproduced from [9].

The link between optical and chemical patterns has been first established in the
paper by Lugiato and Lefever in 1987 [10]. In this article, the authors consider a
coherently driven passive ring cavity filled with a Kerr medium. Light propagation
inside this cavity is subject to dissipation, pumping, nonlinearity, and diffraction. The
slowly varying envelope of the electric field has been averaged on the whole length
of the cavity, which constitutes the mean field limit. The originality of the paper by
Lugiato and Lefever, when compared to former numerical evidence such as the one
described in Fig. 1.2, is that the Turing-Prigogine type of instability does not requires
a bistable reponse curve. Indeed, it can happen in a monostable regime where a
single homogeneous steady state exhibits a transition from a uniform solution to a
self-organized structure that occupies the whole space available in the transverse
plane of the cavity. In addition, the authors provide a generic and simple mean field
model that has a broad range of applications, from passive cavities to Kerr optical
frequency combs and fiber cavities.

Besides periodic patterns which occupy the whole space available in the chem-
ical reactors or in the transverse plane of optical cavities, there exists another type
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of structures, which are called localized structures. They consist of either isolated
or randomly distributed spots in the spatial profile (of the chemical concentration of
a component, or of the electric field intensity). So far, however, such localized struc-
tures have never been experimentally observed in a chemical system, even though
numerical simulations showing presence of stable localized structures in chemical
systems have been succesfully carried out (see e.g. [11]). In optical systems, they
have been predicted [12] and numerically demonstrated [13] in 1994. Experimental
demonstration has since then been performed in, for example, liquid crystals with op-
tical valve [14], quadratic medium [15], or broad area VCSELs. The next section is
devoted to the experimental achievements obtained in localized structure generation
in broad area VCSELs, and we will come back to that point later.

Localized structures in optics do not necessarily form in the transverse plane of
a propagating beam. They can indeed be generated in passive optical fibers, as has
been experimentally evidenced in 2010 [16]. In that case, they consist of a train of
pulses equally spaced in time. They will be described in section 1.3.2.

1.2 DISSIPATIVE LOCALIZED STRUCTURES IN VCSELS

Broad area VCSELs are choice materials for drawing localized structures, and they
are widely used in that context (see recent reviews on that matter [17, 18, 19, 20]).

The first theoretical descriptions of localized structures formation in VCSELs
were made in the late nineties [21, 22, 23]. In these works, the authors all consider
mean field models, that will be investigated in chapters 2 and 3. Shortly afterwards,
in 2000, localized structures were experimentally demonstrated in semiconductor
microcavities [24]. In that communication, the authors used an extremely wide area
resonator (10×20 mm2), illuminated by rather small area (60µm diameter) optical
injection beams. Two beams were used, so that one of them has been used to en-
sure bistability of the device (we refer to this beam as the holding beam or optical
injection in the continuation of this work), and the second is used for localized struc-
ture generation (referred to as writing beam). The microresonator transverse size
was actually too wide to be held at room temperature in a homogeneous manner.
Even though this device was not electrically but optically pumped, it qualifies as a
VCSEL because of its structure. The localized structures that have been generated
in this configuration tend to place themselves at the maximum of the gaussian in-
tensity optical injection. The measurements performed in this communication have
been performed within an observation time of a few microseconds, to avoid thermal
effects.
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It was only in 2002 that localized structures in VCSELs could be stabilized over
a macroscopic time (more than a minute) [25]. The authors also demonstrated in
that communication that the phase of the writing beam could be changed in order
to erase localized structures. Their experimental data is presented in Fig. 1.3. In
that article, the authors claimed that the VCSEL was "operating at current values for
which the center region is under threshold." Interestingly, that does not mean that
the VCSEL was biased below its optical threshold. Indeed, as will be investigated in
chapter 2, when broad area VCSELs are pumped close to their lasing threshold, their
emission pattern is located at the boundaries of the surface emission. This effect is
well-known, and is due to current crowding [26, 27]. That being said, their claim of
using the laser under its lasing threshold is definitely justified, as the region in which
localized structures are generated does not lase. These localized structures are
created on the border between a nonlasing state (on the right side of Fig. 1.3(a)-(l))
and a patterned state. The fact that a region of the surface of the VCSEL presents
a patterned state, and that the other presents a homogeneous emission is due to
the thickness difference in the cavity. This difference induces a shift in the cavity
resonance in the horizontal direction of the VCSEL chip surface of Fig. 1.3.

In 2006 [28] localized structures have been generated in a VCSEL biased above
its lasing threshold for the first time. That is, the VCSEL was lasing over its whole
emission surface. The authors also demonstrate the spontaneous appearance and
disapearing of a localized structure when the optical injection power was swept up
and down.

At the same time, a new scheme for generating localized structures in a more
compact manner has been introduced: it consists of a VCSEL with incorporated
saturable absorber [29, 30, 31]. The main interest of this new scheme is that the
saturable absorber already provides multistability to the system, and there is hence
no more need for a holding beam to ensure Turing instability. The first experimental
realization has been achieved in 2009 [32].

In 2008, a team of the University of Strathclyde in Glasgow developped a "cavity
soliton laser", i.e. a laser that does not require a holding beam to generate localized
structures. To this aim, they used optical feedback from a diffraction grating [33].
This feedback is filtered, so that only one frequency component is sent back to the
VCSEL. The experimental setup is presented in Fig. 1.4a). This setup has been
improved two years later, by changing the diffraction grating into a volume Bragg
grating, that is much less sensitive to the polarization of light [34]. At the same time,
and in a similar attempt to build a robust system for VCSEL-based localized structure
generation, a team at the Institut Nonlinéaire de Nice developed a cavity soliton laser
based on two mutually coupled VCSELs [35]. This device is depicted in Fig. 1.4b).
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Fig. 1.3: Localized structures in an electrically pumped broad area VCSEL. In frame a), the
VCSEL is submitted to the holding beam only. In frame b), the writing beam is turned
on, and a localized structure appears. In frame c), the writing beam is turned off,
and the localized structure stays in place. In frame d), the writing beam is moved
to another position, and it ignites another localized structure. In frame e) and f), the
writing beam is turned off, and the two localized structures coexist. In frame g), the
writing beam is positioned on its first position, and its phase is shifted by 180◦. It
erases the localized structure, as seen in frame h). Frames i) to l) correspond to the
repetition of this procedure for the lower spot.Reproduced from [25].
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In this configuration, one VCSEL is used as a pump, and the other is used as a
saturable absorber. Both configurations allow to generate localized structures.
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Fig. 1.4: a): Experimental setup described in [33]. The VCSEL is placed in an external cavity,
where half-wave plates are used to enhance or reduce reflectivity on the diffraction
grating, as well as to control the polarization state of the incoming light. b): two
VCSELs in a face-to face configuration. The absence of a holding beam allows to
drastically reduce the complexity of the system. Reproduced from [36]

It is well known that in most of these systems, a phase gradient can set the
localized structures in motion [37]. In this publication, the authors suggest that this
phenomenon can be used for utilizing localized structures as an all optical delay line.
A drift of localized structures can also be induced by the diffraction grating frequency-
selective feedback described in [33]. In that case, the finite spectrum of the localized
structure induces an asymmetry in the feedbacked field, that overimposes a phase
gradient over the surface of the localized structure.

A second use for the phase gradient induced drift has been proposed in [38]. It
consists of mapping the defects at the surface of a semiconductor emission window.
Indeed, as a localized structure is set in motion, it will be attracted by local defects. If
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one places a phase gradient on the optical injection, the deviations from the direction
of the gradient can be interpreted as defects, and a mapping of the surface can be
realized.

1.3 VECTOR CHARACTER OF DISSIPATIVE STRUCTURES

As polarization is a fundamental characteristic of light, polarization studies in light
dissipative structures have been carried out quite early, especially in dissipative
structures generated in gas cells (see a review published in 1998 dedicated to that
topic [39]). In particular, two theoretical studies are particularly relevant to that
field: [40, 41]. Considering a generalization of the Lugiato-Lefever model adapted
for polarization studies, the authors investigate the formation of patterns [40] and
localized structures [41].

In this section, we will restrict ourselves on two other systems, in which polariza-
tion plays a crucial role: VCSEL-based systems, and optical fibers.

1.3.1 Polarization studies of dissipative structures in VCSELs

Dissipative structures generated in VCSELs submitted to optical injection are most
often studied in the case when the VCSEL is polarization locked to optical injection.
However, because of the spin-flip mechanism inherent to VCSELs described in [42],
this is not necessarily the case, even if the VCSEL is frequency locked to optical
injection. Moreover, even if the spin-flip mechanism is neglected, there is an inter-
play between the two linear polarization components in the VCSEL that is due to
the carrier population [43]. In this article, the authors consider a medium area VC-
SEL (40µm diameter) submitted to an optical injection that has its linear polarization
crossed to the one in which the VCSEL spontaneously lases in (the principal po-
larization of the VCSEL) when being electrically pumped close to threshold. When
sweeping the pump current, they observe bistability of a bright dot located in the cen-
ter of the VCSEL, polarized in the direction of the optical injection. Interestingly, the
near field profile of the VCSEL stays unchanged in the VCSEL principal polarization
direction, whether the orthogonal linear polarization component contains a localized
structure or not.

Localized structures in VCSELs not submitted to optical injection have attracted
considerable interest. In the first frequency selective feedback system [33], the reflec-
tivity of the diffraction grating is polarization dependant, and it is hence not adapted,
according to the authors, to polarization studies. The research team in the photonics
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center of Strathclyde hence decided to replace the diffraction grating by a volume
Bragg grating, that is much less sensitive to the polarization properties of the incom-
ing light [34]. In this article, the authors measured the orientation of the principal
axis of the polarization ellipse. A first step has been made, but, to fully characterize
the polarization state of light, the ratio between the two linearly polarized compo-
nents of this ellipse needs to be measured, as well as the direction followed by the
polarization on its ellipse.

However, to this day and to our knowledge, there has not been any other exper-
imental studies on the polarization state of localized structures in VCSELs, regard-
less of the technology used to generate them.

1.3.2 Polarization studies of dissipative structures in fibers

Optical fibers are quite adapted for polarization studies. In fact, two different kinds of
vector dissipative localized structures can be generated in optical fibers: Polarization
Locked Vector Soliton (PLVS), and Group Velocity Locked Vector Soliton (GVLVS).
They differ in the sense that PLVS propagate inside a fiber cavity preserving their
shape and polarization properties (even though the polarization state of the localized
structure can vary between the beginning and the end of the pulse), while GVLVS
constantly change their polarization state during their propagation. PLVS have been
studied from 1994 onwards [44]. In this article, the authors theoretically consider a
set of coupled nonlinear Schrödinger equations to describe a fiber ring cavity. They
study the competition between polarization modulation instability, and scalar modu-
lation instability. Please note that this article does not involve localized structures,
but modulation instability (which is the temporal equivalent in optical fibers of a Tur-
ing pattern). However, the authors published the same year a theoretical study that
describes GVLVS [45], still in the framework of modulation instability.

Both types of vector temporal localized structures have been demonstrated ex-
perimentally [46] in an erbium doped fiber laser in 2000. Note however, that the
authors do not interpret their results in terms of dissipative structure [47]. Never-
theless, the very fact that these solitons are generated in a fiber laser, which is an
out-of-equilibrium system, subject to losses and energy input, makes these struc-
tures dissipative structures, even when they are not described that way.

A lot of different systems have been used for generating temporal localized struc-
tures in fiber lasers since then, notably carbon nanotubes [48], or a semiconductor
saturable absorber inside the fiber cavity [49]. The experimental realizations pre-
sented so far have been achieved in fiber lasers. In fact, experimental localized
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structure polarization studies in optical fibers have been to our knowledge limited to
fiber lasers.

1.4 STRUCTURE OF THIS THESIS

The most important part of this work is devoted to the study of localized structures
in VCSELs.

In the second chapter, we provide experimental evidence of spontaneous for-
mation of localized structures in a 80µm diameter VCSEL biased above its lasing
threshold and under optical injection. We show that such localized structures are
bistable with the injected beam power and the VCSEL current. Then, we derive a
generalized delayed Swift-Hohenberg equation for the VCSEL system, which is valid
close to the nascent optical bistability. We characterize the localized structures found
in that system by constructing their snaking bifurcation diagram and by showing clus-
tering behavior within the pinning region of parameters.

In the third chapter, we report the experimental observation of two-dimensional
vector cavity solitons in a VCSEL under linearly polarized optical injection when vary-
ing optical injection linear polarization direction. The polarization of the cavity soliton
is not the one of the optical injection as it acquires a distinct ellipticity. These experi-
mental results are qualitatively reproduced by the spin-flip VCSEL model.

In the fourth chapter, we show that localized structures generated in a VCSEL
submitted to a delayed optical feedback are set into motion by this delayed feedback,
in an arbitrary direction. We characterize moving cavity solitons by estimating their
threshold and calculating their velocity. In addition, we discuss the impact of the
phase of the time-delayed optical feedback in the full model. Both analytically and
numerically, we establish an expression for the velocity associated with the motion
of localized structures.

In order to extend our results to temporal localized structures in fibers, we de-
voted Chapter 5 to their study. In the first part of this chapter, we study the polar-
ization properties of localized structures in low birefringence coherently driven fibers.
We show that two different kinds of localized structures can coexist in the same pa-
rameter set. These structures differ in their polarization properties. In the second
part of this chapter, we show that temporal localized structures in low dispersion
optical fibers can exhibit a motion due to high order dispersion.
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In this chapter, we first describe the experimental setup that has been used to study
scalar localized structures in broad area VCSELs. Then we present the experimental
results obtained with this setup. Next, we present a VCSEL model that takes into
account interaction of light and carriers. Based on it, we derive a modified Swift-
Hohenberg equation that describes the spatio-temporal dynamics of the electric field
in the nascent bistability regime, before building a snaking bifurcation diagram. The
last part of this chapter deals with the use of this model to characterize the formation
of localized structures, by constructing their bifurcation diagram.

2.1 EXPERIMENTAL SETUP FOR LOCALIZED STRUCTURES IN A 80µM VCSEL

A photography and a scheme of the experimental setup dedicated to experimental in-
vestigation of light localized structures are displayed in Figs. 2.1 and 2.2, respectively.
The scheme of Fig. 2.2 is divided in three parts:

• Injection preparation and monitoring

• VCSEL

• Analysis branch

In section 2.1.1, we will discuss the properties of the 80µm diameter VCSEL we
use in the experiment. Section 2.1.2 is devoted to optical injection preparation and
monitoring whereas Sec. 2.1.3 deals with analysis of the output beam.

2.1.1 The standalone VCSEL

The broad-area bottom emitting VCSEL we use in our experiments is obtained through
a collaboration with Prof. Thorsten Ackemann, from University of Strathclyde, in
Glasgow. It is described in Fig. 2.3. The top and bottom Distributed Bragg Reflec-
tors (DBRs) consist of 30 and 20.5 Al0.88Ga0.12As–GaAs layer pairs, respectively.
The active region consists of three In0.2Ga0.8As quantum wells embedded in GaAs
barriers and AlGaAs cladding layers [26]. The bottom-emitting configuration allows
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Fig. 2.1: Experimental setup photography. ML: master laser, OI: optical isolator, λ/2 : half
wave plate, M: mirror, VODF: variable optical density filter, PD: photodiode, OSA:
optical spectrum analyser, L: lens, BS: beam splitter. CCD: CCD camera.

the stand-alone VCSEL to have a better (more homogeneous) current distribution
in the transverse plane and, therefore, is more suitable for producing LSs. More-
over a heat sink can be directly mounted on top of the p-contact and the p-doped
DBR, which is the main source of heat. The temperature distribution is hence more
homogeneous as well.

To ensure a constant temperature of the VCSEL substrate, the VCSEL temper-
ature is controlled and monitored using an integrated circuit temperature transducer
(AD592AN) and a Peltier thermoelectric cooler (both built in a Thorlabs TCMLD9
cage) controlled by a Thorlabs PRO8-ITC8052 module. The same module allows
to control the injection current. This configuration allows temperature and current
stabilities of ∆T = 0.001◦C, and ∆I = 1µA, respectively.

When kept at 25◦C, the lasing threshold of this VCSEL is Ith = 42.0mA. When
the current is maintained slightly above Ith, the near field of this VCSEL displays
circular standing-wave patterns along the perimeter that resembles of the one ob-
served in smaller area VCSELs [43]. Such a pattern is sometimes referred to as
flower-like, or daisy mode [27]. In broad-area VCSELs, this daisy mode has much
more maxima, which indicates a much higher azimuthal order. A near field image for
I = 45.0mA is shown in Fig. 2.4(a). The corresponding optical spectrum is plotted in
Fig. 2.4(b). This spectrum contains two relatively closely spaced wavelengths, which
indicates that the flower mode of Fig. 2.4(a) is not a single transverse mode. Both of
these measurements have been performed at a temperature of Tsub = 25.0◦C.
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Fig. 2.2: Experimental setup schematic. The full line is the path of the light from the master
laser, whereas the dashed line is the path followed by the light from the VCSEL. (i):
injection preparation and monitoring; Master: master laser, OI: optical isolator, λ/2
: half wave plate, M: mirror, VODF: variable optical density filter; (ii) : VCSEL; (iii):
analysis branch; PD: photodiode, OSA: optical spectrum analyser, L: lens, BS: beam
splitter.
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Fig. 2.3: 3D representation of a bottom-emitting InGaAs quantum well VCSEL, as used in the
experiment.



28 S C A L A R L O C A L I Z E D S T RU C T U R E S I N V C S E L S

O
u
tp

u
t 

P
o
w

er
 [

d
B

m
]

Wavelength [nm]

-30

-40

-50

-60

-70
978 980 982 984

a) b)

Fig. 2.4: Solitary VCSEL characteristics obtained for I = 45.0mA and Tsub = 25.0◦C. (a):
near field profile in the transverse plane. Black corresponds to high optical power
whereas white corresponds to low optical power. (b): the corresponding optical spec-
trum.

2.1.2 Injection branch: preparation and monitoring

To provide the optical injection, we use a commercial external cavity diode laser from
Sacher Lasertechnik TEC-100-0960-060 controlled by a Sacher Lasertechnik MLD-
1000 laser driver. This device consists of a temperature-controlled anti-reflection
coated laser diode and a diffraction grating set in a Littrow configuration. The exter-
nal cavity Littrow configuration is described in Fig. 2.5. This system yields 60mW
single mode linearly polarized output and a wavelength tunable between 910nm and
985nm, with a 24 hour drift of 300MHz. As the output from this device is linearly po-
larized, we can use an optical isolator for avoiding unwanted feedback to this laser.
To this purpose, we use an Optics For Research IO-5-TIS2-HP optical isolator, that
provides 10dB isolation at 983nm.

The output linear polarization is then tuned to match the one of the VCSEL, us-
ing a Thorlabs WPH05M-980 half-wave plate. The direction of the beam is then
tuned using four Thorlabs BB1-E03 dielectric mirrors so that optical injection is eas-
ily achieved. Finally, just before encountering the VCSEL, a small part of the beam
is taken into a photodiode (Newport 818-SL), for the sake of monitoring the input
power. This is performed using a Thorlabs BP108 pellicle beamsampler.

Most lenses of the setup are at the boundary between the injection and analysis
branches. They allow the light from the master laser to be collimated when it encoun-
ters the VCSEL, and the light in the direction of the analysis branch to be collimated
as well. A scheme for the lens arrangement is described in Fig. 2.6
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Mirror Light output

Reflection

Diffraction of order -1

Light emission from the diode

Fig. 2.5: Littrow configuration for external cavity laser diodes. The AR-coated laser diode light
is collimated and encounters a reflective diffraction grating. Reflection on this grating
is used as light output, whereas the order −1 of diffraction is sent back to the laser
diode. The inclination of the diffraction grating determines which wavelength can be
sent back to the diode, and can produce laser emission. This inclination can be tuned
using a piezoelectric crystal connected to a voltage supply.

2.1.3 Analysis branch

The analysis branch consists of three elements:

1. A fiber coupling unit that is connected to an Optical Spectrum Analyzer (OSA)
(Ando AQ6317B);

2. A photodiode, identical to the one used for injection monitoring;

3. A CCD camera (Point Grey Research CMLN-13S2M-CS).

For every measurement that has been performed, every measurable parameter has
been acquired via MATLAB routines (namely temperature and current of the VCSEL,
injection power, power on the second photodiode, near field profile of the VCSEL,
and spectrum of the latter).

2.2 EXPERIMENTAL OBSERVATION OF LOCALIZED STRUCTURES IN A BROAD-AREA

VCSEL

In this section, we will use the experimental setup described in Sec. 2.1. The first
section will be devoted to a description of the optically injected VCSEL, whereas the
latter will describe the localized structures generation per se.
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Fig. 2.6: Lenses arrangement at the boundary between injection and analysis branches. L1
and L2 play the role of a telescope for the injection beam (right travelling rays),
whereas the light coming from the VCSEL is collimated by L1, before encountering
L2 and L3, that play the role of a telescope towards the analysis branch (left travel-
ling rays).. L1 is a Thorlabs C330-TME-B aspheric lens with focal length f1=3.1mm,
L2 is a Thorlabs LA1131-B, of focal length f2=50.0mm. L3 is a Thorlabs LA1986-B,
with focal length f3=125.0mm. All lenses are anti-reflection coated in the wavelength
range 650-1050nm. Reprinted from [50]



2.2 EXPERIMENTAL OBSERVATION OF LOCALIZED STRUCTURES IN A BROAD-AREA VCSEL 31

2.2.1 Optically injected VCSEL

In this section, the VCSEL is kept at 25.0◦C, while its current is set at 45.0mA. For
the VCSEL to be locked to the master laser, three conditions need to be fulfilled [51]:

• The locking wavelength (of the master laser) needs to be longer than the free
running one (of the slave VCSEL);

• The frequency difference needs to be small;

• The master laser power needs to be high enough: as a general rule, the larger
the detuning, the higher the master laser power needs to be for locking to
occur.

The two first conditions are most often expressed as follows, in terms of fre-
quency: the frequency detuning θ = νM − νS, where νM is the frequency of the
master laser and νS the frequency of the slave laser, needs to be negative and small
enough for locking to occur.

The fact that the VCSEL is injection-locked or not can be seen two ways: first,
as the VCSEL is locked, the characteristic daisy mode that the VCSEL exhibits in
its near field profile when being pumped close to its current threshold disappears.
Second, it can also be seen in the optical spectrum. Indeed, when the VCSEL is
locked, its lasing peaks disappear, to the advantage of a new peak, at the injection
wavelength.

Measurements of optical spectra of the optically injected VCSEL are shown in
Fig. 2.7, alongside with the corresponding near field profiles. In Fig. 2.7a), the optical
power of the master laser is Pinj = 850µW. In that case, we can see that the VCSEL
is not locked to the optical injection, for two reasons. First, even if the near field profile
changes a lot, its boundary still exhibits a flower mode. Second, an examination
of the spectrum shows that even it is is strongly modified by the optical injection,
the peak corresponding to the optical injection is accompanied by a lower intensity
one, at a shorter wavelength. In Fig. 2.7b), the optical power of the master laser is
Pinj = 2.04mW. Here, the VCSEL is locked to the optical injection, as can be seen
with the "flower-free" near field profile and the spectral peaks of the free running
VCSEL that disappear completely.

2.2.2 Experimental observation of localized structures in 80µm diameter VC-
SEL

All the measurements described in this section are performed while the VCSEL is
frequency locked to optical injection. The experimental setup is the one described in
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Fig. 2.7: Dashed lines: optical spectra of the free running VCSEL obtained for I = 45.0mA
and T = 25.0◦C. Solid lines: optically injected VCSEL with λinj = 983.24nm (indi-
cated by a vertical arrow) and injection power of (a) Pinj = 850µW and (b) Pinj = 2.04
mW. The insets are near field images of the optically injected VCSEL.

Fig. 2.2. The experimental procedure reads as follows: first, the power of the master
laser is set to a maximum. The second step is to perform the fine alignment, to allow
the master laser to be injected in the VCSEL. Third, the wavelength of the master
laser is set. Last, the power of the master laser is tuned up and down, using the
variable optical density filter. At each measurement, a whole set of data is recorded
from the instruments: injection current of the VCSEL, temperature of the VCSEL
substrate, optical spectrum, power at both photodiodes PD1 and PD2, and near field
profiles. A sudden change in the experimental conditions can indeed have several
sources. By example, one needs to discriminate between the appearance of a local-
ized structure and a change in the near field pattern induced by a slight change in
the injection spectrum. Such a change in the injection spectrum can be due to mode
hopping in the master laser.

Injected light-output power curves are displayed in Figs. 2.8, 2.10 and 2.11. Op-
tical bistable regions are easily visible with a hysteresis region for increasing and
decreasing optical power. On each of those light-output curves, there are insets
displaying the near field profiles on the lower and higher branches of the bistable
curve. While being recorded at different injection currents, optical injection wave-
lengths, and different VCSEL substrate temperatures, they all exhibit the same be-
havior: from a lower branch containing a pattern made of some bright spots, as one
increases the input optical power, one can see the overall output power increase
linearly, up to a certain power Pup. At this very point, the output power undergoes an
abrupt increase, that is correlated with the appearance of a new bright spot. From
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this point, if one then decreases the optical injection power, it will decrease linearly
down to a certain power Pdown. At this point, the formerly mentioned new bright spot
disappears. The fact that Pup > Pdown is a display of hysteresis, that is a funda-
mental characteristic of localized structures. This is a manifestation of the nonlinear
mechanisms responsible for their appearance.
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Fig. 2.8: Bistability between one and two-peaked LSs inside the near field of the VCSEL as
a function of the optical injection power. (a): power emitted by the VCSEL as a
function of the optical injection power for frequency detuning between the master
laser and the VCSEL of θ = −174GHz. The insets (i) and (ii) respectively represent
near field profiles on the higher and lower branch of the hysteresis. (b) and (c): one
dimensional profiles along the horizontal line drawn on the aforementioned insets.

In Fig. 2.8b), and c), cross sections of the different near field profiles are pre-
sented. Localized structures can be recognized as well defined peaks. Several
accompanying peaks are also visible in their characteristic oscillating tails, whose
amplitude decays with the distance to the center of the localized structure. To better
apprehend them, one can draw a one dimensional plot on a defined line of the near
field presented as insets in the bistability curves (see Fig. 2.9). This is, to our knowl-
edge, the first experimental evidence of such oscillating tails in VCSELs, even though
they have been demonstrated in other optical pattern forming systems [52, 53, 54].

This method can be used to draw and erase several localized structures. This
manifestation of the multistability inherent to localized structures is shown in Fig. 2.12.
Here, as the energy input is increased, the system switches to a 2-peaked struc-
ture to a 4-peaked one. When this quantity is decreased, instead of switching back
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Fig. 2.9: One dimensional profiles of the localized structure depicted in Fig. 2.8b) (full line),
and c)(dashed line). The full line is the state in which a localized structure is present,
whereas the dashed one represents the lower branch of the hysteresis.
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onoff

Fig. 2.10: Bistability between one and two-peaked LSs inside the near field of the VCSEL
as a function of the optical injection power. Left: power emitted by the VCSEL as
a function of the optical injection power for θ = −146GHz. The insets represent
near field profiles on the higher and lower branch of the hysteresis. Right: one
dimensional profiles along the vertical lines drawn on the aforementioned insets.
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Fig. 2.11: Power emitted by the VCSEL as a function of the optical injection power. The insets
represent near field profiles on the higher and lower branch of the hysteresis.
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abruptly to the 2-peaked state, the system transits via a 3-peaked state, before
switching effectiveley to a 2-peaked state.
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Fig. 2.12: Bistability between three states inside the near field of the VCSEL as a function
of the optical injection power. (a): power emitted by the VCSEL as a function of
the optical injection power for θ = −118GHz. The insets (2P) and (3P) and (4P)
represent near field profiles of the three possible states of the system. (b), (c) and
(d): one dimensional profiles along the vertical line drawn on the aforementioned
insets.

The bistable behavior of switching on and off of a localized structure in broad
area VCSEL can also be observed while varying, instead of the optical injection
power, the VCSEL current. An example thereof is presented in Fig. 2.13.

To sum up this experimental part, we investigated the formation of two dimen-
sional localized structures in the transverse section of a 80µm diameter VCSEL.
Bistability corresponding to spontaneous appearance and disappearance of a local-
ized structure has been observed, as a function of optical injection power, and as
a function of VCSEL current. Oscillating tails of the localized structures have been
observed. Localized structures have also been shown to exhibit multistability.
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Fig. 2.13: Bistability between two states inside the near field of the VCSEL as a function of the
VCSEL current. (a): power emitted by the VCSEL as a function of the VCSEL cur-
rent. The bistable region of the curve has its detuning θ varying between −185GHz
and −166 GHz due to the current induced thermal red shift. The insets (i) and (ii)
represent near field profiles of the two possible states of the system. (b) and (c):
one dimensional profiles along the vertical line drawn on the aforementioned insets.



38 S C A L A R L O C A L I Z E D S T RU C T U R E S I N V C S E L S

All of these measurements have been performed while the linearly polarized op-
tical injection has its direction matching the one in which the VCSEL spontaneously
lases while being pumped close to its current threshold.

2.3 THEORETICAL DESCRIPTION OF BROAD AREA VCSELS

In this section, we first describe the validity range and formulation of the VCSEL
mean field scalar model [23]. Then, we derive a single scalar equation, valid in the
nascent bistability regime.

2.4 VCSEL MEAN-FIELD SCALAR MODEL

To describe the electric field emittted by a VCSEL, we consider the mean field model
obtained in the slowly varying envelope (variations of the envelope of the electric field
happen on a timescale much longer than the propagation oscillations) and paraxial
approximations of the coupled Maxwell-Bloch equations described in [42]. In this
section, we focus on the scalar case, where the polarization degrees of freedom
are not taken into account (the vector model will be discussed in Chap. 3). In this
approach, the electric field is coupled to only one excitonic line, in resonance in the
cavity. This means that the continuous absorbtion band that alters the high frequency
side of the excitonic line in the absorbtion spectrum of the semiconductor material is
neglected.

We assume that the cavity has a large Fresnel number (that is, a larger aspect
ratio). In addition, we assume that the cavity is much shorter than the diffraction,
diffusion, and nonlinearity characteristic scales. We further simplify the problem by
assuming a single longitudinal mode approximation. Under these approximations,
the adimensional electric field envelope E and carrier density Z evolve in time ac-
cording to the following partial differential equations [23]:

∂E
∂t′

= −(1 + η + iθ)E + 2C(1 − iα)(Z − 1)E + i∇′2
⊥E + EI , (2.1)

∂Z
∂t′

= −γ
[

Z − I + |E|2(Z − 1)− d f∇′2
⊥Z
]

, (2.2)

In these equations, η is a dissipation term for the electric field, θ is the cavity detun-
ing parameter, EI is the optical injection strength, C is the bistability parameter, and
α is the linewidth enhancement factor. The transverse Laplacian acts in the plane
transverse to the propagation of light, and its action accounts for diffraction in the
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paraxial approximation (electric field equation), and for diffusion of the carriers (car-
riers equation). γ is the decay rate for carriers, and I is the current. All quantities
have been renormalized, including space and time. Details of this renormalization
can be found in Chap. 3.

2.4.1 Modified Swift-Hohenberg equation

Near the second order critical point associated with optical bistability, the Maxwell-
Bloch equations describing a laser under optical injection can be described by a real
parameter Swift-Hohenberg equation [55]:

∂X
∂t

= 4y + X(C − X2)− 4a∆∇2
⊥X − 4

3
a2∇4

⊥X. (2.3)

In this equation, some parameters and variables denote deviations from the onset
of optical bistability: X is the one from the electric field, y is the one from the optical
injection strength and C is the one from the cooperativity parameter. a is proportional
to the spacing between two adjacent modes, and ∆ is the detuning between cavity
and injection field.

This equation has an important property: it is linked with a Lyapunov functional
L, defined as

∂X
∂t

= − δL
δX

, (2.4)

that can be minimized in order to find equilibrium states. An analysis of the functional
L, and of the corresponding solutions for a real parameter Swift-Hohenberg equation
has been performed in [56].

In this section, we show that Eqs. 2.1-2.2 near the critical point associated with
optical bistability leads to a nonvariational Swift-Hohenberg equation. To do so, we
first reduce the number of parameters. We hence introduce n ≡ C(Z − 1)− 1/2,
e ≡ E∗/

√
2 and Y ≡ EI/(2

√
2). Equations (2.1) and (2.2) now read

∂e
∂t

= iθ′e + (1 + iα)ne + Y − i∇2
⊥e, (2.5)

∂n
∂t

= γ(P − n − (1 + 2n)|e|2 + D∇2
⊥n), (2.6)

where P ≡ C(I − 1)− 1/2, γ ≡ γ′/2, D = 2d f , η′ ≡ ξ/2 and θ′ ≡ (θ + α)/2. The

time and space scales are now (t, τ) ≡ 2(t′, τ′) and ∇2
⊥ ≡ 2∇′2

⊥. We now place
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ourselves in the limit of small cavity detuning θ′ = 0. The homogeneous steady state
(es, ns) is then described by

Y = −es(1 + iα)
P − |es|2
1 + 2|es|2

and

ns =
P − |es|2
1 + 2|es|2

.

We restrict our analysis to the nascent bistability regime, close to the critical point
where ∂Y/∂|es| = ∂2Y/∂|es|2 = 0. The coordinates of this point read as

ec = (1 − iα)

√
3

1 + α2

2
,

nc = −3
2

,

Pc = −9
2

,

Dc =
8α

3 + 3α2 ,

Yc =
3
√

3 + 3α2

2
.

We look for perturbations of the homogeneous steady state that depend on space
and time via the slow variables t → (1/γ + Dc/α)tϵ2 and (x, y) →

√
ϵ/Dc(x, y),

where ϵ is a small parameter. We then expand the variables e, n and the parameters
Y, D and P around their critical values as

e = ec(1 + ϵ f + ϵ2e2 + . . . ),

n = nc(1 + ϵn1 + ϵ2n2 + . . . ),

Y = Yc(1 − ϵ2 p2/2 + ϵ3y + . . . ),

P = Pc(1 + 3ϵ2 p2 + . . . ),

D = Dc(1 + ϵd + . . . ).

Order ϵ leads to

0 = n1 + f (2.7)

0 = f + f ∗ + 2n1 (2.8)
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These two conditions bring

f ∈ R (2.9)

f = −n1 (2.10)

Order ϵ2 leads to

e2 + n2 = − p2

2
+ f 2 − i + α

4α
∇⊥ f , (2.11)

e2 + e∗2 + 2n2 = −3p2 + 2 f 2 − ∇⊥ f
2

. (2.12)

This leads to

e2 = −i
∇2

⊥ f
4α

. (2.13)

Further developing at order ϵ3, we have

e3 + n3 =
αy
4α

+ f
(

p2

2
+

α − i
4α

∇⊥ f
)
− f 3

− 1 − iα
16α2 ∇4

⊥ f − 2γ(1 − iα)
3 + 3α2 + 8γ

∂ f
∂t

,
(2.14)

e3 + e∗3 + 2n3 = f
6p2 + 3∇2

⊥ f
4

+
3 + 3α2

6 + 6α2 + 16γ

∂ f
∂t

− 3 f 3

2
+

∇2
⊥ f 2

2
−

d∇2
⊥ f

2
−

∇4
⊥ f
8

.

(2.15)

The solvability condition at this order (this is, the sum of Eq. 2.14, its complex conju-
gate, and Eq. 2.15) brings the following sclar amplitude equation

∂ f
∂t

= y − f
(

p + f 2
)
+

(
d − 5 f

2

)
∇2

⊥ f − a∇4
⊥ f − 2(∇⊥ f )2, (2.16)

where the parameter a is defined as a ≡ (1 − α2)/(4α2). By using the relation

(∇⊥ f )2 =
∇2

⊥( f 2)

2
− f∇2

⊥ f , (2.17)

one can reformulate Eq. 2.16 in the form

∂ f
∂t

= y − f
(

p + f 2
)
+

(
d − f

2

)
∇2

⊥ f − a∇4
⊥ f −∇2

⊥( f 2), (2.18)

that is more suited to numerical simulations.
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This equation is physically relevant only if a > 0, which implies a very small
linewidth enhancement factor α < 1. If this condition is not fulfilled, the development
needs to be pursued at higher order to ensure a bounded solution to Eq. 2.16. Even
though the linewidth enhancement factor of the lasers used in this work are typically
around α ≈ 3-5, we will, for the sake of simplicity, restrict ourselves to this limit in
this work. This equation corresponds to the modified Swift-Hohenberg equation used
elsewhere [57, 58]. Note that this equation differs from the usual Swift-Hohenberg
equation [59, 60]. Indeed, contrarly to the Swift-Hohenberg equation, this equation
is nonvariational, because of the term f∇⊥ f . This term and the square gradient
term also break the symmetry (y, f ) → (−y,− f ).

2.5 LINEAR STABILITY ANALYSIS OF THE MODIFIED SWIFT-HOHENBERG EQUATION

The homogeneous steady solutions fs of Eq. 2.16 are given by

y = fs(p + f 2
s ). (2.19)

If p < 0, the electric field f as a function of the input intensity y is bistable with limit
points fL± = ±

√
−p/3.

We now consider a linear deviation from the homogeneous steady state of the
form eλt+ik·x, where x = (x, y) corresponds to the transverse coordinates, the trans-
verse wavevector is k and the corresponding wavenumber is k. The characteristic
equation reads

λ = −(p + 3 f 2
s )− k2

(
d − 5 fs

2

)
− ak4. (2.20)

Turing instabilities occur when two conditions are fulfilled. The first one yields ∂λ
∂k = 0.

The wavenumber thresholds for a Turing instability hence read

k2
± =

5 fs± − 2d
4a

. (2.21)

The positiveness of this quantity brings the condition

5 fs± >
2d
5

. (2.22)

The second condition for the occurence of a Turing instability is λ = 0. When one
combines the two conditions, this brings

fT± =
2

25 − 48a

[
5d ± 2

√
a[12d2 + p(25 − 48a)]

]
. (2.23)
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a − 25/48 < 0 a − 25/48 > 0
p > 0, d > 0 ]− ∞, fT−] R − [ fT+, fT−]
p > 0, d < 0 R R − [ fT+, fT−]

p < −12d2/25, d < 0 ]− ∞, fL−] R − [ fL+, fT−]
−12d2/25 < p < 0, d < 0 ]− ∞, fT+] R − [ fT+, fT−]

p < −12d2/25, d > 0 ]− ∞, fL+] ∪ [ fL−, fT+] R − [ fL+, fT−]
−12d2/25 < p < 0, d > 0 ]− ∞, fL+] ∪ [ fT−, fT+] R − [ fT+, fT−]

Tab. 2.1: Classification of various stability domains for the steady homogeneous state fs as a
function of dynamical parameters of the modified Swift-Hohenberg equation (2.16)

One can see from this equation that if fs is sufficiently large, and 48a < 25, then all
homogeneous steady states are unstable.

A classification of the different scenarios leading to Turing instability based on this
analysis is presented in Table 2.1. In this table, we classify the different regions in
which the system is stable (that is, the regions in which there is no Turing instability)
as a function of the values of the parameters a, p, and d.

The analysis of Eq. 2.23 shows that, when p = pc = 12d2/(48a − 25), the two
instability thresholds coincide at fT± = fc = −5pc/(6d). At this bifurcation point,
the wavenumbers are k± = kc =

√
12 fc5.

In the case when the two pattern forming instabilities are not close one to another,
a theoretical study based on a truncated Fourier analysis has been performed [57].
In this article, the authors have derived a normal form associated with stripes, hexagons
0 and honeycombs (hexagons π) for Eq. 2.16. They performed a relative stability
analysis of given patterns with respect to perturbations, favoring formation of other
patterns with different symmetries. The results of their analysis have been summed
up in the bifurcation diagram presented in Fig. 2.14. As can be seen from this fig-
ure, as one increases the intensity of the injected field amplitude, the homogeneous
steady state loses stability at yT−, and a branch of hexagons (H0) appear. This
branch is stable on a wide range of parameters. As the intensity of the injected
field is further increased, a region of coexistence between hexagons and stripes
is reached. Then, the H0 branch becomes unstable, and the only stable solution
remaining stable corresponds to the stripes branch. A small region of coexistence
between stripes and honeycombs (Hπ) is then reached, before the stripes solution
loses stability. When the injected field amplitudes becomes yT+, the homogeneous
steady state recovers its stability. There are hence domains of coexistence between
different kinds of patterns.
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H0

stripes

Hπ

y
T-

y
T+

Fig. 2.14: Bifurcation diagram (lines) and numerical simulations (points)for distant instabilities
in 2 dimensions for the normal form associated with Eq. 2.16. Only maxima of spa-
tial oscillations are presented here. The H0 branch (∆) corresponds to hexagons,
the middle branch corresponds to stripes (•), and the Hπ branch (⋆) corresponds
to honeycombs. Dotted lines correspond to numerically unstable parts. Parameters
are p = 1, d = −5, and a = 3.75. Reproduced from [57].
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Of particular interest are the regions of coexistence between homogeneous states
and patterned states. These regions are the small region of coexistence between ho-
mogeneous steady state and H0 close to yT−, and the small region of coexistence
between the homogeneous steady state and Hπ close to yT+. In these regions, a
spatially organized state can coexist with a homogeneous state. This is one of the
conditions required for the generation of localized structures. Unfortunately, the nor-
mal form procedure does not allow to study these objects [61]. Numerical study of
these objects is the subject of the next section.

2.6 LOCALIZED STRUCTURES AND THEIR BIFURCATION SNAKING DIAGRAMS

In the region where localized structures can be drawn (the so-called pinning region),
the system exhibits a high degree of multistability. In this region, a homogeneous
steady state can coexist with an infinite set of patterns made of an increasing num-
ber of localized structures. This phenomenon is called homoclinic snaking. Each
complex of localized structures is characterized by either an odd or an even number
of peaks. Examples of localized structures having odd and even number or peaks
are presented in Fig. 2.15.
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Fig. 2.15: Stationary localized structures formed with one (a), two (b), three (c), and four (d)
peaks in the amplitude of the intracavity field. The parameters are y = −0.35,p =
−0.7,d = −1.2, and a = 0.75.

Since the peak amplitudes of localized patterns comprising different numbers of
solitons are close to each other,it is convenient to plot the "L2 norm" defined by the
relation W =

∫
dx| f − fs|2 instead of the peak amplitudes. A typical bifurcation

diagram, illustrating the dependence of W on the input field amplitude y, is shown in
Fig. 2.16. It consists of two snaking curves: one corresponding to localized patterns
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with an odd number of peaks and the other to patterns with an even number of peaks.
The two interweaved snaking curves emerge from the Turing instability point located
at f = fT+. For each curve, as W increases, at every turning point where the slope
becomes infinite, a pair of additional peaks appears in the pattern.

Fig. 2.16: Snaking bifurcation diagram of Eq. 2.16 showing two interweaved snaking curves:
the branches (a)–(d) correspond to one through four localized structures, respec-
tively (see Fig. 2.15). The full and the broken lines correspond to stable and unsta-
ble localized branches of solutions, respectively. The parameters are p = −0.7,d =
−1.2, and a = 0.75. Reproduced from [62].

2.7 CONCLUSIONS

In this chapter, we have built an experimental setup, and we have investigated the
formation of two-dimensional localized structures in the transverse section of a 80µm
diameter VCSEL. Bistability corresponding to spontaneous appearance and disap-
pearing of a localized structure have been observed, as a function of optical injection
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power, and as a function of VCSEL current. Oscillating tails of the localized struc-
tures have also been observed. Spontaneous appearance and disappearance of
two localized structures have also been observed, which is a manifestation of multi-
stability.

All of these measurements have been performed while the linearly polarized op-
tical injection had its direction matching the one in which the VCSEL spontaneously
lases in while being pumped close to its current threshold.

Considering a model for the specific case of a VCSEL injection-locked in polar-
ization and frequency in the vicinity of the nascent bistability, we provided nonlinear
perturbative analysis and obtained a modified Swift-Hohenberg equation. Based on
this equation, we showed that, in one transverse dimension, stationary-cavity soli-
tons exhibited a clustering behavior in the pinning range of parameters where spa-
tially homogeneous and periodic solutions were both linearly stable. In this range,
we constructed a snaking bifurcation diagram associated with localized structures
having an odd, or an even number of peaks.
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Polarization is a fundamental property of light that has been neglected in the previ-
ous chapter. We could do so, because the polarization degree of freedom was taken
away by the optical injection (polarization locking). This is a reasonible assumption,
as the VCSEL was electrically pumped close to its lasing threshold (where its lin-
ear polarization direction is vertical), and the optical injection linear polarization was
vertical. However, if we now consider a relatively large angle between the optical
injection linear polarization direction and the linear polarization direction of the VC-
SEL, we cannot assume that the dynamics of the electric field will be limited to this
particular linear polarization direction.

In this chapter, we first experimentally characterize the polarization state of local-
ized structures when they are generated using a linearly polarized optical injection.
The polarization direction is varied in a 90◦ span. These measurements show that
the localized structure polarization is not exactly the one of the optical injection. In
fact, the polarization state of the so-generated localized structures is not linear, as
it acquires distinct ellipticity. In the second part of this chapter, we use the spin-flip
VCSEL model derived in chapter 2 to study such vector localized structures. The lo-
calized structures numerically generated using this model present an ellipticity com-
parable to the one from the experimental results, and carry out detailed mapping
of the steady states and their stability in the plane of injection strength-frequency
detuning between optical injection and VCSEL.

3.1 EXPERIMENTAL OBSERVATION OF VECTOR LOCALIZED STRUCTURES

To study the polarization properties of localized structures in VCSELs, it is necessary
to modify the experimental setup described in chapter 2. In this section, we describe
the modifications made to that setup. Next, we present experimental observation of
vector localized structures, alongside with their polarization properties, described in
terms of their Stokes parameters.

We first describe the experimental setup. Then we describe the results obtained
with it.
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3.1.1 Experimental setup for investigation of polarization properties of local-
ized structures in VCSELs

A scheme of the experimental setup for investigation of polarization properties of
localized structures in VCSELs is presented in Fig. 3.1. There are two main differ-
ences with the scheme presented in Fig. 2.2: first, the variable optical density filter
from the former setup has been replaced by a combination of a half-wave plate and
a polarizer. This allows the polarization state of the injected light to be kept well lin-
early polarized. Second, another analysis branch has been placed. It consists of an
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Fig. 3.1: Experimental setup schematic. The full line is the path of the light from the master
laser, whereas the dashed line is the path followed by the light from the VCSEL. The
analysis branch (1) is used for general localized structure characterization, whereas
the analysis branch (2) is used for determination of polarization properties of local-
ized structures. ML: master laser, OI: optical isolator, λ/2 : half wave plate, M: mirror,
GT: Glan Thompson prism, PD: photodiode, OSA: optical spectrum analyser,λ/4:
quarter wave-plate.

iris (to isolate the localized structure from the background), a quarter-wave plate, a
polarizer and a photodiode. These three elements allow to measure the polarization
state of the localized structure, using the method described in [63].
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To measure the Stokes parameters, we perform 6 measurements, for different
orientations of the quarter-wave plate and the polarizer. The intensities measured at
the photodiode PD2 for measurement of the Stokes parameters are I0,0, I45,45, I90,90,
I135,135, I0,45, and I0,135, where Iα,β is a measurement that has been performed while
the quarter-wave plate makes an angle α with horizontal, and the polarizer makes
an angle β with horizontal. These quantities are related to the Stokes parameters by

S0 = I0,0 + I90,90, (3.1)

S1 = I0,0 − I90,90, (3.2)

S2 = I45,45 − I135,135, (3.3)

S3 = I0,45 − I0,135. (3.4)

These quantities can be related to the projections of the electric field on its linear
components Ex and Ey by the relations

S0 = |Ex|2 + |Ey|2, (3.5)

S1 = |Ex|2 − |Ey|2, (3.6)

S2 = E∗
x Ey + ExE∗

y , (3.7)

S3 = i(E∗
x Ey − ExE∗

y). (3.8)

The parameter S0 represents the total intensity of the electromagnetic wave. The
positive part of S1 accounts for the amount of light linearly polarized in the horizontal
direction, its negative part holds for the vertically polarized component.

S1, S2 and S3 provide the amount of light polarized, respectively, along x and y
axes, at 45 degrees with respect to the x and y axes, and left and right circularly
polarized.

S1, S2, and S3 are sometimes normalized. To distinguish between these two
conventions, we use capital letters for the Stokes parameters, and small font letters
for normalized quantities: si = Si/S0, for i ∈ [1 : 3].

3.1.2 Experimental observation of vector localized structures in VCSELs

In this section, we use the experimental setup described in Sec. 3.1.1. The experi-
mental procedure reads as follows: first, we choose a linear polarization direction for
the optical injection. Then, we repeat the procedure described in Sec. 2.2.2, in order
to prove that the considered region of the transverse plane of the VCSEL is indeed
a localized structure. An example thereof, for an optical injection linear polarization
making an angle of -30◦ with horizontal, is presented in Fig. 3.2.
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Fig. 3.2: Bistability curve, i.e. the VCSEL output power as a function of injection power ob-
tained for an optical injection polarized in the direction of the one of the free-running
VCSEL. The wavelength of the optical injection is λM = 983.35nm. The inset a)
(resp. b)) represents the near field profile on the upper (resp. lower) branch of the
hysteresis. These results have been obtained with the VCSEL kept at 25.00◦C with
an injection current of 45.0 mA. Each measurement has been marked with the corre-
sponding near field profile.
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Once the bistable character of the localized structure has been proven, the op-
tical injection power is set quite strong, such as the system will stay on the higher
branch of the hysteresis. Then, the analysis branch (1) in Fig. 3.1 is replaced by
the analysis branch (2). We then use the iris to isolate the localized structure from
the rest of the VCSEL radiation, before measuring the localized structure’s Stokes
parameters. This experiment is then repeated for various directions of the optical
injection linear polarization.

Results of these measurements are presented in Fig. 3.3. This figure presents
the Stokes parameters s1,2,3, normalized over the localized structure total power S0,
as a function of the optical injection linear polarization direction with respect to hori-
zontal, Ψ. The angle θ between the horizontal and the direction of the main axis of
the localized structure polarization ellipse is also depicted in that figure.

The Stokes parameters s1 and s2 provide insight into the proportion of localized
structure power that is linearly polarized. s3 describes the amount of light that is
circularly polarized. The circular component of the localized structure power does
not come from the optical injection. Indeed, when the s3 component is at a max-
imum, at 20◦, a measurement of the optical injection Stokes parameters brings a
measurement of s3OI = −0.00627. This value is twenty times smaller than the one
of corresponding localized structure s3 = 0.22. The ellipticity of the localized struc-
ture hence cannot be attributed to the one of the optical injection, but is inherent
to the optically injected VCSEL. We will theoretically investigate these effects in the
next section.

3.2 THEORETICAL DESCRIPTION OF VECTOR LOCALIZED STRUCTURES

To describe the previous experimental results, we first describe the evolution of light
in a free-running VCSEL, taking into account the polarization dynamics. Then, we
add an optical injection in this description, before taking the assumption that the
dynamics all take place in a single linear polarization direction.

To derive the equations governing the evolution in time and space of the electric
field inside such a structure, we will start from the very general Maxwell-Bloch equa-
tions (as in [42]), written for the convention F ≡ [Fx(x, y, t)ux + Fy(x, y, t)uy]ei(k·z−νt)+
c.c.. In this expression, Fx(x, y, t) and Fy(x, y, t) are the slowly varying field ampli-
tudes of the fields polarized in the x and y directions, respectively. ux and uy are
unitary vectors along these directions. k and ν are the wavevector and frequency of
the electric field.

One considers the four-level model in Fig. 3.4: charge carriers are either of
positive or negative spin projection. Due to spin conservation and depending on the
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Fig. 3.3: Stokes parameters of a localized structure as a function of optical injection linear
polarization angle with horizontal Ψ. a): s1. b): s2. c):angle between main axis of
the polarization ellipse and horizontal θ.d): s3. VCSEL is kept at 25.00◦C, injection
current is 45.0 mA and optical injection wavelength is kept at 983.3 nm.
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Fig. 3.4: Four level model for quantum well VCSELs. The energy levels i describe carriers of
spin i. As the transition of a carrier happens, a photon of left (resp. right) circular
polarization is emitted, contributing to the electric field E+ (resp. E−). Exchange rate
between different spin sign populations is denoted γj.

sign of their spin, their decay from level +(−)3/2 to level +(−)1/2 will result in the
generation of a right (left) circularly polarized light. We define the quantities

D =
n1 + n−1 − (n3 + n−3)

2
, (3.9)

d =
n−1 − n−3 − (n1 − n3)

2
, (3.10)

where population of carriers having a spin i/2 is denoted ni. that way, D is the
average population inversion, whereas d is the difference between the negative and
positive spin population inversions. In the mean-field, slowly-varying envelope, and
paraxial approximations, the model describing the spatio-temporal evolution of the
fields F±, P±, and of the populations D and d read [42]:

∂F±
∂t

= −κF± − iνF± − ig∗0 P± + i
c2

2ν
∇2

⊥F±, (3.11)

∂P±
∂t

= −[γ⊥ + i(ω − ν)]P± + ig0F±(D ± d), (3.12)

∂D
∂t

= −γ∥(D − σ) + [ig∗0(F∗
+P+ + F∗

−P−) + c.c.] + D f∇2
⊥D, (3.13)

∂d
∂t

= −γjd + [ig∗0(F∗
+P+ − F∗

−P−) + c.c.] + D f∇2
⊥d. (3.14)

In these equations, g0 is the coupling constant between the slowly varying ampli-
tudes of the right and left circularly polarized elements of the electric field F± and
the corresponding matter polarization slowly varying envelope P±. κ is the inverse
photon lifetime in the cavity. The frequency associated with the transitions depicted
in Fig. 3.4 is ω. The transverse Laplacian ∇2

⊥ in the electric field equation accounts
for diffraction, whereas the one in the population equations accounts for diffusion of
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the carriers; it acts in the plane transverse to the propagation of light. γ⊥ is the re-
laxation rate for polarization. σ is the pumping rate associated with current injection.
D f is the diffusion coefficient for carriers. c is the speed of light. γ∥ is the relaxation
rate for carriers and γj is the spin exchange rate.

As the dipole decay rate is much faster than the other timescales involved in
these equations, one can adiabatically eliminate polarization. This leads to

P± =
g0(iγ⊥ + ω − ν)

γ2
⊥ + (ω − ν)2

F±(D ± d) (3.15)

and

∂F±
∂t

= −(κ + iν)F± +
|g0|2[γ⊥ − i(ω − ν)]F±(D ± d)

γ2
⊥ + (ω − ν)2

+ i
c2

2ν
∇2

⊥F±

(3.16)

∂D
∂t

= −γ∥(D − σ) + D f∇2
⊥D

− 2γ⊥|g0|2[|F+|2(D + d) + |F−|2(D − d)]
γ2
⊥ + (ω − ν)2

,
(3.17)

∂d
∂t

= −γjd + D f∇2
⊥d

− 2γ⊥|g0|2[|F+|2(D + d)− |F−|2(D − d)]
γ2
⊥ + (ω − ν)2

.
(3.18)

The rescaling is now performed as follows:

E± ≡
√

2γ⊥|g0|2
γ∥[γ

2
⊥ + (ω − ν)2]

F±,

(N, n) ≡ γ⊥|g0|2(D, d)
κ(γ2

⊥ + (ω − ν)2)
,

α ≡ ω − ν

γ⊥
,

µ ≡ |g0|2γ⊥σ

κ[γ2
⊥ + (ω − ν)2]

.
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After some algebra, Eqs. 3.16-3.18 become

∂E±
∂t

= −(κ + iν)E± + κ(1 − iα)E±(N ± n) + i
c2

2ν
∇2

⊥E±, (3.19)

∂N
∂t

= −γ∥[N − µ + |E+|2(N + n) + |E−|2(N − n)] + D f∇2
⊥N, (3.20)

∂n
∂t

= −γjn − γ∥[|E+|2(N + n)− |E−|2(N − n)] + D f∇2
⊥n. (3.21)

In these equations, the different field polarizations are only coupled through the pop-
ulation equations. To account for the unavoidable birefringence effects, one phe-
nomenologically introduces the two constants γa, the amplitude anisotropy, and γp,
the phase anisotropy [64]:

∂E±
∂t

= −(κ + iν)E± + κ(1 − iα)E±(N ± n)

+ i
c2

2ν
∇2

⊥E± − γaE∓ − iγpE∓,
(3.22)

∂N
∂t

= −γ∥[N − µ + |E+|2(N + n) + |E−|2(N − n)] + D f∇2
⊥N, (3.23)

∂n
∂t

= −γjn − γ∥[|E+|2(N + n)− |E−|2(N − n)] + D f∇2
⊥n. (3.24)

To have a zero frequency when the VCSEL is at the lasing threshold current [64], we
now set ν = κα. This leads to

∂E±
∂t

= κ(1 − iα)(N ± n − 1)E± + i
c2

2κα
∇2

⊥E±

− γaE∓ − iγpE∓,
(3.25)

∂N
∂t

= −γ∥

[
N(1 + |E+|2 + |E−|2)− µ + n(|E+|2 − |E−|2)

]
+ D f∇2

⊥N,
(3.26)

∂n
∂t

= −γjn + D f∇2
⊥n

− γ∥

[
n(|E+|2 + |E−|2) + N(|E+|2 − |E−|2)

]
.

(3.27)
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As the optical injection we plan to add in this model is linearly polarized, it makes
sense to rewrite Eqs. 3.25-3.27 in their (x, y) components:

∂Ex

∂t
= −(κ + γa)Ex + i(κα − γp)Ex

+ κ(1 − iα)(NEx + inEy) +
ic2

2κα
∇2

⊥Ex,
(3.28)

∂Ey

∂t
= −(κ − γa)Ey + i(κα + γp)Ey

+ κ(1 − iα)(NEy − inEx) +
ic2

2κα
∇2

⊥Ey,
(3.29)

∂N
∂t

= −γ∥

[
N(1 + |Ex|2 + |Ey|2)− µ + 2nℑ(ExE∗

y)
]

+ D f∇2
⊥N,

(3.30)

∂n
∂t

= −γjn + D f∇2
⊥n − γ∥

[
n(|Ex|2 + |Ey|2) + 2Nℑ(ExE∗

y)
]

. (3.31)

3.2.1 VCSEL under linearly polarized optical injection

We now add optical injection in the equations for the electric field. The detuning be-
tween the resonator frequency and the optical injection frequency is depicted as ∆ω,
the injection power is denoted κEI and its linear polarization direction is described
by Ψ, the angle between horizontal and the linear polarization direction. One gets
then

∂Ex

∂t
= −(κ + γa)Ex + i(κα − γp + ∆ω)Ex

+ κ(1 − iα)(NEx + inEy) + i
c2

2κα
∇2

⊥Ex + κEI cos(Ψ),
(3.32)

∂Ey

∂t
= −(κ − γa)Ey + i(κα + γp + ∆ω)Ey

+ κ(1 − iα)(NEy − inEx) + i
c2

2κα
∇2

⊥Ey + κEI sin(Ψ),
(3.33)

∂N
∂t

= −γ∥

[
N(1 + |Ex|2 + |Ey|2)− µ + 2nℑ(ExE∗

y)
]

+ D f∇2
⊥N,

(3.34)

∂n
∂t

= −γjn + D f∇2
⊥n − γ∥

[
n(|Ex|2 + |Ey|2) + 2Nℑ(ExE∗

y)
]

. (3.35)
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In the case when the linear polarization of the optical injection has an arbitrary direc-
tion, we will neglect diffusion of the carriers D f . It brings, defining a ≡ c2

2κα

∂Ex

∂t
= −(κ + γa)Ex + i(κα − γp + ∆ω)Ex

+ κ(1 − iα)(NEx + inEy) + ia∇2
⊥Ex + κEI cos(Ψ),

(3.36)

∂Ey

∂t
= −(κ − γa)Ey + i(κα + γp + ∆ω)Ey

+ κ(1 − iα)(NEy − inEx) + ia∇2
⊥Ey + κEI sin(Ψ),

(3.37)

∂N
∂t

= −γ∥

[
N(1 + |Ex|2 + |Ey|2)− µ + 2nℑ(ExE∗

y)
]

(3.38)

∂n
∂t

= −γjn − γ∥

[
n(|Ex|2 + |Ey|2) + 2Nℑ(ExE∗

y)
]

. (3.39)

We will in the continuation of this work refer to this equation system (Eqs.3.36-3.39)
as the VCSEL spin-flip model. This model notably features two main timescales,
given by the photon lifetime κ (hundreds of ns−1) and the carrier lifetime γ∥ (some
ns−1). The control parameters are µ, the injection current, EI , the optical injection
power, Ψ, its linear polarization angle with horizontal, and ∆ω, the frequency differ-
ence between optical injection and cavity.

3.2.2 Link between the spin-flip and the scalar VCSEL mean field models

The model described in the previous chapter can be derived from the Eqs. 3.36-3.39.
If we now assume that the VCSEL is locked in both frequency and polarization to
the linearly polarized optical injection, then there is no need for two field envelope
variables. In that case, the VCSEL does not emit light in the orthogonal polarization,
and Eqs. 3.36-3.39 can be simplified, taking Ey = Ψ = n = 0. They then reduce to

∂E
∂t

= −(κ + γa)E + i(κα − γp + ∆ω)E

+ κ(1 − iα)NE + i
c2

2κα
∇2

⊥E + κEI ,
(3.40)

∂N
∂t

= −γ∥

[
N(1 + |E|2)− µ

]
+ D f∇2

⊥N, (3.41)
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In these equations, Ex has been replaced by E, as it is the only component of
the electric field to survive. One can now scale time to the photon lifetime t′ ≡ κt:

∂E
∂t′

= −(1 +
γa

κ
)E + i(α −

γp − ∆ω

κ
)E

+ (1 − iα)NE + i
c2

2κ2α
∇2

⊥E + EI ,
(3.42)

∂N
∂t′

= −
γ∥
κ

[
N(1 + |E|2)− µ

]
+

D f

κ
∇2

⊥N, (3.43)

The population inversion and space can be rescaled too, using

Z ≡ N
2C

+ 1,

∇2
⊥ ≡ 2κ2α

c2 ∇′2
⊥.

That brings

∂E
∂t′

= −
[

1 +
γa

κ
+ i
(
−α +

γp − ∆ω

κ

)]
E

+ (1 − iα)2C(Z − 1)E + i∇′2
⊥E + EI ,

(3.44)

∂Z
∂t′

= −
γ∥
κ

[
(Z − 1)(1 + |E|2)− µ

2C

]
+

2D f κα

c2 ∇′2
⊥Z, (3.45)

We now use, to describe the equivalent diffusion of the carriers d f , cavity losses η,
cavity detuning θ, carrier decay rate γ and current injection I the following conven-
tions:

d f ≡
2D f κ2α

c2γ∥
,

η ≡ γa

κ
,

θ ≡
γp − ∆ω

κ
,

γ ≡
γ∥
κ

,

I ≡ µ

2C
+ 1.
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Replacing these quantities in Eqs. 3.44 and 3.45, we recover the VCSEL scalar
mean field model described in [23] given in Eqs. 2.1-2.2:

∂E
∂t′

= −(1 + η + iθ)E + 2C(1 − iα)(Z − 1)E + i∇′2
⊥E + EI , (3.46)

∂Z
∂t′

= −γ
[

Z − I + |E|2(Z − 1)− d f∇′2
⊥Z
]

. (3.47)

These equations have been discussed in chapter 2

3.3 HOMOGENEOUS STEADY STATES OF THE VCSEL SPIN-FLIP MODEL AND THEIR

LINEAR STABILITY

In order to find localized structures in the VCSEL spin flip model described by Eqs. 3.36-
3.39, we first investigate the homogeneous steady states of these equations, defined
by ∂X0/∂t = ∇2

⊥X0 = 0, where X stands for the electric field envelopes Ex,y, and
the populations D and d.

The homogeneous steady states of Eqs. 3.36-3.39 yield:

0 = −(κ + γa)Ex0 + i(κα − γp + ∆ω)Ex0

+ κ(1 − iα)(N0Ex0 + in0Ey0) + κEI cos(Ψ),
(3.48)

0 = −(κ − γa)Ey0 + i(κα + γp + ∆ω)Ey0

+ κ(1 − iα)(N0Ey0 − in0Ex0) + κEI sin(Ψ),
(3.49)

0 = N0(1 + |Ex0|2 + |Ey0|2)− µ + 2n0ℑ(Ex0E∗
y0), (3.50)

0 = γjn0 + γ∥

[
n0(|Ex0|2 + |Ey0|2) + 2N0ℑ(Ex0E∗

y0)
]

. (3.51)

Defining Ex = X + iY, and Ey = W + iV, the characteristic matrix reads

P A κn0α −κn0 κ(X0 + αY0) −κ(V0 − αW0)
−A P κn0 κn0α κ(−αX0 + Y0) κ(W0 + αV0)

−κn0α κn0 P C κ(W0 + αV0) κ(Y0 − αX0)
−κn0 −κn0α −C P κ(V0 − αW0) κ(−X0 − αY0)

D G J L B −2γ∥(Y0W0 − V0X0)

F H K M −2γ∥(Y0W0 − V0X0) Q

 ,

with A = −κα + γp − ∆ω + ak2 + κN0α, B = −[γ∥(1+ X2
0 +Y2

0 +W2
0 +V2

0 ) + λ],
C = −κα−γp −∆ω + καN0 + ak2, D = −2γ∥(N0X0 − n0V0), F = −2γ∥(n0X0 −
N0V0), G = −2γ∥(N0Y0 + n0W0), H = −2γ∥(n0Y0 + N0W0), J = −2γ∥(N0W0 +
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Fig. 3.5: Homogeneous steady states for |E|2 as a function of optical injection power EI for the
model (3.36)-(3.39). Stable states (plus signs), plane wave unstable states (circles)
and Turing unstable states (crosses). The spin-flip model parameters are κ = 200
ns−1, γa = 1, α = 3, γp = −20 ns−1, ∆ω = 200 ns−1, a = 1, γ∥ = 1 ns−1, µ =

1.05, γj = 50 ns−1, Ψ = 0.5 rad. A and B lines represent the limits of the bistable
region.

n0Y0), K = −2γ∥(n0W0 + N0Y0), L = −2γ∥(N0V0 − n0X0), M = −2γ∥(n0V0 −
N0X0), P = −(κ + γa − κN0 + λ), and Q = −[γj + γ∥(X2

0 +Y2
0 +W2

0 +V2
0 ) + λ].

Linear stability analysis of Eqs. 3.36-3.39 is performed in two ways: first, we
describe the evolution of the stability of the system for all values of the parameters
fixed, apart from the injection strength EI . In a second stage, we investigate the
evolution of the stability of the system when two parameters are varied: the injection
strength EI , and the detuning between the injection field and the VCSEL frequency
∆ω.

In Fig. 3.5, the homogeneous steady states of the system are presented, as a
function of optical injection power EI , as well as their stability properties, computed
from the characteristic matrix. In this figure, × denote Turing unstable states, ◦
represent plane wave unstable states, and + stand for stable states. For low injection
strength values, the system is unstable. As the injection strength EI is increased,
when the line A is met, another state, that is Turing unstable, begins to coexist with
this unstable state. Soon after, as one further increases the intensity of the optical
injection, the first state becomes stable, while it still coexists with the turing unstable
state. As the optical injection is further increased, when the line B is met, the lower
energy state ceases to exist, leaving the upper energy Turing unstable state as the
only possible state of the system.

In Fig. 3.6, a mapping of the stability of the system in the vicinity of the param-
eters of Fig. 3.5 is presented. In this figure, the different stability scenarios are
presented as color codes. It is worth remarking that unstable steady states located
in the middle of S-shaped hysteresis curves are not considered here.
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Fig. 3.6: Mapping of spin-flip VCSEL model homogeneous solution and their stability in the
plane of injection strength EI -frequency detuning between optical injection and VC-
SEL cavity ∆ω. Green, blue and black denote the presence of a single unstable,
Turing unstable, and stable state, respectively. Yellow (red) denote the coexistence
of a Turing unstable state with an unstable (stable) state. Apart from ∆ω, parameters
are the same as in Fig. 3.5.

One notices that for low optical injection power EI , the system is unstable. De-
pending on the detuning parameter ∆ω, an increase of EI can either lead to a stabi-
lization of this state, or the appearance of a Turing unstable state, coexisting with the
formerly mentionned unstable state. Further increasing the optical injection power
brings a stable state coexisting with a Turing unstable state (that is, the combina-
tion of the two previously mentioned effects). With ever increasing optical injection
strength, the stable state disapears, to leave the Turing unstable state as the only
possible state of the system. Finally, if the frequency difference ∆ω is high enough,
this Turing unstable state turns into a stable state.

A parameter set of particular interest is depicted in Figs. 3.7 and 3.8. These pa-
rameters are the same, apart from µ = 1.01, and α = 5, in a small detuning param-
eter range. In these figures, a region of coexistence of two different Turing branches
with a stable homogeneous steady state exists. That means that two different pat-
terns can in principle be generated from the same initial condition, alongside with
a homogeneous state, for the same parameter values (just by changing the initial
condition). Even though the homogeneous steady state has been observed, as well



64 V E C TO R L O C A L I Z E D S T RU C T U R E S I N B ROA D A R E A V C S E L S

Δ
ω
[n
s
-1
]

E
I

Fig. 3.7: Mapping of spin-flip VCSEL model homogeneous solution and their stability in the
plane of injection strength EI -frequency detuning between optical injection and VC-
SEL cavity ∆ω. The color code is the same as in Fig. 3.6, with deep grey (white)
describing the coexistence of two (Turing)unstable states. Light grey corresponds to
the presence of three states. Parameters are the same as in Fig. 3.6, apart from
µ = 1.1, and α = 5.

as one of the patterns, the second pattern has not yet been observed numerically,
and is the subject of ongoing work.

3.4 VECTOR LOCALIZED STRUCTURES IN THE VCSEL SPIN FLIP MODEL

Numerical simulations of Eqs. 3.36-3.39 have been performed in one of the domains
of coexistence between a homogeneous steady state and a Turing unstable state:
the domain between the lines A and B of Fig. 3.5. Results have been plotted using
relations 3.5-3.8 as a function of the Stokes parameters. This is shown in Fig. 3.9.
This localized structure does not have a linear polarization state, as the Stokes pa-
rameter S3 is clearly higher than the background level on the localized structure.

Numerical simulations have been repeated in one dimension for comparison with
the experimental results presented in Fig. 3.3. They are presented in Fig. 3.10. As
can be seen from this figure, the numerically simulated localized structures exhibit a
quite large s3. Comparing this figure with the experimental results shown in Fig. 3.3,
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Fig. 3.8: Close-up of Fig. 3.7 for the tristable regime.
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Fig. 3.9: (Color Online) Numerical evidence of presence of dissipative structures in the spin-
flip VCSEL model described by Eqs. 3.36- 3.39. Parameters are the same as in
Fig. 3.5, with EI = 0.265. Integration has been performed using a Runge-Kutta of
order 4 method with a time step of 0.0001 for the temporal integration, and a finite
difference method of accuracy 4 and space step 0.045 for the spatial integration on
a 50 × 50 grid.
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we observe qualitatively the same behavior. Some small divergences between the
two figures can be explained by the lack of knowledge of the spin-flip decay rate that
is important for the modelling.

3.5 CONCLUSION

In this chapter, we have built an experimental setup for generation and characteriza-
tion of vector localized structures in the transverse section of a broad area VCSEL.
Bistability corresponding to the spontaneous appearance and disappearance of a
localized structure has been observed, as a function of optical injection power. The
Stokes parameters of these localized structures have been measured, for orienta-
tions of the optical injection linear polarization varying in a 90◦ span. This analysis
revealed that localized structures acquired ellipticity.

A model for describing the polarization dynamics of localized structures in a
broad area VCSEL has been derived: the VCSEL spin-flip model. Based on this
model, we performed a linear stability analysis. That is, we investigated the de-
pendance of the homogeneous steady states of the system and their linear stability
analysis as a function of optical injection strength EI , and, in a second stage, as a
function of optical injection strength EI , and of the frequency detuning between op-
tical injection and the VCSEL frequency ∆ω. This linear stability analysis revealed
a bistable region of coexistence between a Turing unstable branch, and a homo-
geneous stable branch. Localized structures have been numerically found in this
regime. Linear stability analysis of the VCSEL spin-flip model in the plane optical in-
jection strength-frequency detuning between optical injection and VCSEL cavity has
led to the discovery of a tristable region.

Numerical simulations of the VCSEL spin-flip model have been compared with
experimental data. There is a good agreement between numerical and experimental
data. A quite large ellipticity of the polarization state of localized structures, de-
scribed by the s3 parameter, has been both measured and computed to be as high
as s3 ≈ 0.2.

One may expect that, owing to its general character, the vector localized structure
should be observed in other spatially extended systems. Using localized structures
in broad-area VCSELs that can be switched on and off independently as pixels for
information processing [25] constitutes a bitmap. Considering the Stokes parameters
of the vector localized structures demonstrated here, one would potentially create a
colormap instead of a bitmap, i.e. each pixel contains information in a 3-parameter
space (s1, s2, s3) that easily can be translated into a color code. In such a way, the
density of information can be dramatically increased.
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Fig. 3.10: Stokes parameters of numerically generated CSs as a function of Ψ. Parame-
ters are a = 1ns−1, α = 3, ∆ω = 200ns−1, γ∥ = 1ns−1, γa = 0.1ns−1, γp =

−20ns−1, γj = 50ns−1, κ = 200ns−1 and µ = 1.05. Various values of EI have
been used.
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4
M OT I O N O F L O C A L I Z E D S T RU C T U R E S D U E TO D E L AY E D
F E E D B AC K

Delayed feedback is a well documented issue, that has a tremendous impact on the
dynamics of almost any system (see e.g. [65]). The interest of their use in lasers has
been realized very early (see by example a review on this matter [51]). A frequency-
selective optical feedback has been proven to allow localized structures generation
in VCSELs [33]. Even in that context, localized structures appear as stable stationary
objects.

However, delayed feedback can theoretically set these structures into motion.
This feature has been abundantly discussed in the litterature (see by example [66,
67, 68, 69, 70]), even though no experimental observation has been performed so
far.

In this chapter, we will investigate theoretically when and how fast does this mo-
tion occur, in two different cases. First, we will restrict ourselves to the nascent
bistability regime, as in Eq. 2.16. We will first evidence this delay-induced motion of
localized structures numerically. Then, we will derive an analytical expression for the
threshold associated with this motion, as well as for the velocity of localized struc-
tures. In a second stage, this analysis is repeated in the more general case of the
VCSEL scalar model described by Eqs. 2.1-4.2, supplemented with a delay term.

4.1 INTRODUCTION

In this chapter, we consider the system described in Fig. 4.1. We place ourselves
in the validity framework of Eqs. 2.1-4.2, that is, the VCSEL is locked in polarization
and frequency to the optical injection, we consider only one cavity mode for lasing
emission, apply the mean field limit and the slowly variable amplitude approximation.
Moreover, we consider the feedback in the Rozanov-Lang-Kobayashi approach [71,
72]. This means that we neglect standing waves developping in the external cavity.
Instead, we only consider light emitted to come back to the VCSEL after one and
only one round trip in the external cavity. If the external cavity is of length L, the
round trip time τ is then τ = 2L/c. In these approximations, the equation describing
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Fig. 4.1: VCSEL submitted to optical injection and placed in an external cavity, where diffrac-
tion is compensated.

the spatio-temporal evolution of the carrier population remains unchanged: Eq. 4.2.
The spatio-temporal evolution of the electric field yields

∂E
∂t′

= −(1 + η + iθ)E + 2C(1 − iα)(Z − 1)E

+ i∇′2
⊥E + EI + ζeiφE(t − τ),

(4.1)

∂Z
∂t′

= −γ
[

Z − I + |E|2(Z − 1)− d f∇′2
⊥Z
]

. (4.2)

In these equations, τ has been scaled the same way t has been, to the photon
lifetime. The phase of the feedback is ϕ, and the scaling and efficiency of the optical
feedback are described by the parameter ζ. Other parameters are described in
chapter 2

This equation will be studied in Sec. 4.2.3.
For the moment, we will place ourselves in the validity regime of Eq. 2.16, that

is, small cavity detuning and nascent bistability regime. Additionally, we place our-
selves in the large external cavity regime (which allows to scale the delay time the
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same way time has been scaled), weak feedback regime, and either constructive or
destructive optical feedback. The feedback term is hence scalar, and can be inte-
grated in Eq. 2.16 directly. This model now yields

∂ f
∂t

= y − f
(

p + f 2
)
+

(
d − 5 f

2

)
∇2

⊥ f − a∇4
⊥ f − 2(∇⊥ f )2 + η f (t − τ). (4.3)

In this equation, |η| is the scalar feedback amplitude. Its sign describes whether
the interference is constructive (+ sign) or destructive (− sign). The next section is
devoted to the study of the localized structure delay-induced motion in the restricted
framework of this equation.

4.2 NASCENT BISTABILITY REGIME

To investigate delay-induced motion in the framework of Eq. 4.3, we first perform a
linear stability analysis of this equation, before investigating this model numerically.
In the last part, we derive the quantities associated with the delay-induced motion:
threshold for motion, and velocity of this motion.

4.2.1 Linear Stability Analysis

The homogeneous steady state solutions f̄ of Eq. 4.3 are solutions of

y = f̄
(

p − η + f̄ 2
)

. (4.4)

We consider a small deviation around the homogeneous state f̄ proportional to
eλt+k·r, where r = (x, y) and k is the transverse wavevector. The corresponding
transcendental characteristic equation is

λ = −
(

3 f̄ 2 + p
)
+

(
5 f̄
2

− d
)

k2 − ak4 + ηe−λτ . (4.5)

Turing instabilities correspond to the occurrence of zero real root λ = 0 and ∂λ/∂k =
0.

Comparing the homogeneous steady states 4.4 with the homogeneous steady
states fs of Eq. 2.16 described in Eq. 2.19, we remark that the change of variable
p → p − η is equivalent to fs → f̄ . In the specific case of the investigation of Turing
instabilities, where λ = 0, this change of variable also changes the characteristic
equation Eq. 2.20 to Eq. 4.5. For these reasons, the results derived in Sec. 2.5 are
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directly translatable to Eq. 4.3, just by performing the change of variable p → p − η.
This includes Eqs. 2.21 to 2.23, and table 2.1. For the sake of compactness, we will
refer in the rest of this chapter to Eqs. 2.21 and 2.23 when needed, for equations
taking into account this change of variables.

The delayed feedback however has a strong influence on the system, not only
because of its symmetry breaking properties. Even if one considers only a Turing
instability, a change in the value of the parameter η has the same effect as a change
with opposing sign in the value of the parameter p. To illustrate this statement, dif-
ferent marginal stability curves associated with different values of feedback strength
η are depicted in Fig. 4.2. Critical points as a function of the feedback strength are
evidenced in Fig. 4.3. Figure 4.4 represents the critical wavenumbers associated
with modulational instabilities.

Fig. 4.2: Marginal stability curves in the plane ( f̄ , k2). Parameters are p = −0.9, d = −1.5
and a = 0.75. Different feedback strengths have been considered: η = −2
(black),η = 0(blue) and η = 2(red). Results obtained using Eq. 2.21.
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T

T

Fig. 4.3: Turing instability thresholds as a function of the feedback strength. Parameters are
p = −0.9, d = −1.5 and a = 0.75. Results obtained using Eq.(2.23).

Delayed feedback has a much more important influence when it comes to study-
ing the effects of a travelling wave instability. This instability occurs when a pair of
complex conjugate eigenvalues has a zero real part, i.e., λ = ±iΩ. That is, when

η cos(Ωτ) = (3 f̄ 2
TW± + p) + (d − 5 f̄TW±

2
)k2

TW± + ak4
TW±, (4.6)

η sin(Ωτ) = −Ω. (4.7)

Two examples of stability curves associated with the travelling wave instabilities are
shown in Figs. 4.5 and 4.6. These curves describe the evolution of the homogeneous
steady states as functions of driving field y in the monostable and bistable regimes.
They also describe the unstable wave numbers associated with the travelling-wave
instabilities as a function of the homogeneous steady state.
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Fig. 4.4: Critical wavenumbers associated with modulational instabilities as a function of the
feedback strength. Parameters are p = −0.9, d = −1.5 and a = 0.75. Results
obtained using Eq. 2.21

4.2.2 Numerical simulations

If the delayed feedback is weak enough, then Eq. 4.3 admits stationary localized
structures. In Fig. 4.7, we present numerical simulations of Eq. 4.3 with η = 0.01,
τ = 1, and the rest of the parameters being equal to the ones of Fig. 2.15. Clearly,
the snaking bifurcation mechanism discussed in chapter 2 and shown in Fig. 2.16 is
still present when the optical feedback is weak.
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Fig. 4.5: Stability curves associated with the travelling wave instability in the monostable
regime. Black, full (dashed) line: injection strength as a function of the homoge-
neous stable (unstable) steady state. Results obtained using Eqs. 4.4 and 4.5. Red:
wavenumber of the travelling wave instability as a function of the homogeneous
steady state. Results obtained using Eqs. 4.6 and 4.7. Feedback parameters are
η = −0.1 and τ = 15. Numerical solution of Eq. 4.7 gives the angular frequency for
the travelling wave instability: Ω = 0.100. Other parameters are p = 5, a = 0.1, and
d = −1.

If the delay feedback strength exceeds a threshold given by ητ = −1 [66], a
single localized structure starts to move in an arbitrary direction (due to the isotropy
in space) as shown in the time space-map of Fig. 4.8.

Figure 4.9 is an example of two bounded localized structures that are initially
separated. They start to repel each other, and exhibit a motion in opposite directions.
The numerical simulations have been performed using periodic boundary conditions.

Numerical simulations in two dimensions show a similar behavior: in Fig. 4.10,
a single peaked localized structure submitted to delayed feedback moves in an ar-
bitrary direction. Repelling of two localized structures due to delayed feedback is
shown in Fig. 4.11.
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Fig. 4.6: Stability curves associated with the travelling wave instability in the bistable regime.
Black, full (dashed) line: injection strength as a function of the homogeneous stable
(unstable) steady state. Results obtained using Eqs. 4.4 and 4.5. Red: wavenum-
ber of the travelling wave instability as a function of the homogeneous steady state.
Results obtained using Eqs. 4.6 and 4.7. Feedback parameters are η = −0.1 and
τ = 15. Numerical solution of Eq. 4.7 gives the angular frequency for the travelling
wave instability: Ω = 0.100. Other parameters are p = −2, a = 2, and d = −1.

4.2.3 Drift instability: calculation of the velocity

In this section, we describe the spontaneous motion of localized structures induced
by the delayed feedback, in the framework of Eq. 4.3. We calculate the threshold
value of the feedback strength above which localized structures start to move in an
arbitrary direction and derive an expression for the velocity of the localized structure.

To derive the drift instability threshold, we will apply a method similar to the one
used in Ref. [66]. To do so, we rewrite equation (4.3) in the form

∂ f
∂t

= y − f
(

p̃ + f 2
)
+

(
d − 5 f

2

)
∇2

⊥ f

− a∇4
⊥ f − 2(∇⊥ f )2 + η[ f (t − τ)− f (t)],

(4.8)
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Fig. 4.7: Numerical simulation of Eq. 4.3 in one dimension, with one (up left) to five (down)
peaked localized structures. Parameters are y = −0.35, p = −0.7, d = −1.2,
η = 0.1, τ = 1, and a = 0.75.

with p̃ ≡ p − η. We assume that Eq. 4.8, without the term η[ f (t − τ)− f (t)], has
a stable stationary radially symmetric structure solution. f is then only a function
of the distance to the center of this structure f = f0(|r|). Stability of this solution
means all the solutions Λ of the following eigenvalue problem:

L⊥A = ΛA (4.9)
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Fig. 4.8: Space-time map of a moving localized structure solution of Eq. 2.16 in 1 dimension.
Parameters are y = −0.5, p = −0.9, d = −1.5, η = −0.15,τ = 15 and a = 0.75.

with the self adjoint operator

L⊥ = −
(

p̃ + 3 f 2
0 +

5∇2
⊥ f0

2

)
+

(
d − 5 f0

2

)
∇2

⊥ − a∇4
⊥ (4.10)

are real and negative except for a pair of zero eigenvalues, corresponding to the
translational invariance of Eq. 4.8, Λ1,2 = 0. Since the term η[ f (t − τ) − f (t)]
vanishes at any stationary solution, the stationary structure f0(|r|) is also a solution
of Eq. 4.8 with η ̸= 0. We now introduce a slight perturbation in the shape of the
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Fig. 4.9: Space-time map of two repelling localized structures solution of Eq. 2.16 in 1 dimen-
sion. Parameters are y = −0.5, p = −0.9, d = −1.5, η = −0.15,τ = 15 and
a = 0.75.

localized structure in the form f (r, t) = f0(|r|) + Aeµt into Eq. 4.8. Extracting the
linear contributions in the perturbation brings

L⊥A =
(
µ + η(1 − e−µτ)

)
A, (4.11)

From Eqs. 4.10 and 4.11 we notice that, for η ̸= 0, the stability of localized structure
solution f0 requires that the real parts of all the solutions µ of the equation

µ + η(1 − e−µτ) = Λ (4.12)

must be non-positive for all Λ.
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t=20 t=100

Fig. 4.10: A moving localized structure solution of Eq. 2.16 in 2 dimensions. Parameters are
y = −0.5, p = −0.9, d = −1.5, η = −0.15,τ = 15 and a = 0.75.

t=20 t=100

Fig. 4.11: Two repelling localized structures solution of Eq. 2.16 in 2 dimensions, at t=20 and
t=100. Parameters are y = −0.5, p = −0.9, d = −1.5, η = −0.15,τ = 15 and
a = 0.75.

In particular, assuming that |µ| << 1 and expanding Eq. 4.12 up to the second-
order terms in µ, we obtain two real solutions, for the twofold degenerate eigenvalue
Λ1,2 = 0 that read

µ1,2 =
2(ητ + 1)

ητ2 , µ3,4 = 0, (4.13)
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where zero solutions µ3,4 are associated with the translational symmetry of the model
equations and µ1,2 change their sign at the drift instability point ητ = −1. At this
point, where Eq. 4.11 has the fourfold degenerate solution µ1,2,3,4 = 0, the sta-
tionary structure solution loses stability, and the uniformly moving structure solution
bifurcates from the stationary one. According to Eq. 4.13, the stationary structure
is stable for −1/τ < η < 0 and becomes unstable for ητ < −1. The velocity of
the moving single-localized structure can be estimated by performing an expansion
in terms of a small parameter ζ, which measures the distance from the drift insta-
bility threshold ητ = −1 − ζ2. Let us look for a solution to Eq. 4.8 in the form of a
uniformly moving-localized structure,

f (r, t) = f0(R) + ζ3δ f (R) + . . . , R = r − vt, (4.14)

where f0 is the stationary structure solution evaluated at the drift instability point, v =
ζV is the structure velocity, and δ f is the correction to the structure shape due to its
motion. Plugging this expression into Eq. 2.16, using the expansion f0(R − ζVτ) =
f0(R)− ζτV · ∇⊥ f0(R)+ (ζτV · ∇⊥)

2 f0(R)/2− (ζτV · ∇⊥)
3 f0(R)/6+ . . . , and

collecting third order in ζ , we obtain the following inhomogeneous problem:

L⊥δ f = V · ∇⊥ f0 +
ητ3

6
(V · ∇⊥)

3 f0. (4.15)

According to the solvability condition, the right-hand side of this equation should
be orthogonal to the translational neutral modes Ax,y = ∂x f0, ∂y f0. By multiplying
Eq. 4.15 with the linear combination of these modes V · ∇⊥ f0/V ≡ f1 and integrat-
ing over 2D space, we obtain the equation for the localized structure velocity,

V
(∫

R2
f 2
1 dxdy − η

6
V2τ3

∫
R2

f1 f3dxdy
)
= 0, (4.16)

,where f3 = (V·∇⊥)
3 f0

|V|3 . Setting f2 = (V·∇⊥)
2 f0

|V|2 , a non-trivial solution of this equation
is given by

v = ζV =
Q
τ

√
−(1 + ητ) with Q =

√
6

∫
R2 f 2

1 dxdy∫
R2 f 2

2 dxdy
, (4.17)

where the relation
∫

R2 f1 f3dxdy =
∫

R2 f 2
2 dxdy is used, which is obtained by inte-

gration by parts. The expression for the structure velocity 4.17 coincides with that
obtained earlier for the case of the variational Swift-Hohenberg equation [66], which
describes a driven passive nonlinear cavity filled with two-level atoms. This expres-
sion is valid not only for a single-localized structure, but also for any localized pattern.



82 L S M OT I O N D U E TO D E L AY E D F E E D B AC K

The spatial form of the pattern affects only the factor Q in Eq. 4.17, which can be
calculated numerically. In particular, for the parameter values y = −0.35, p = −0.7,
d = −1.2, and a = 0.75, we obtain Q = 1.44. The dependence of the structure
velocity on the time delay calculated using Eq. 4.17 is plotted for fixed values of
the feedback strength in Fig. 4.12. It is seen that velocity reaches its maximum at
τ = −2/η, which is vmax = −Qη/2.

Fig. 4.12: Velocity of the CS as a function of the time delay τ for different values of the feed-
back strength. Calculated from Eq. 4.17. Parameters are y = −0.35, p = −0.7,
d = −1.2, and a = 0.75.

4.3 DRIFT ANALYSIS IN THE VCSEL MEAN FIELD SCALAR MODEL

Example of moving two-dimensional LS are shown in Fig. 4.13. The single and the
three moving peaks are obtained from numerical simulations of Eqs. (4.1) and (4.2).
The boundary condition are periodic in both transverse dimensions.
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Fig. 4.13: Field intensity illustrating a moving a single (a) and three (b) peak LS. Parameter
values are C = 0.45, θ = −2., α = 5., η = 0. Feedback parameters are ζ = 0.135,
τ = 100, φ = 0.5. Maxima are plain white.

In the case when the system is transversely isotropic, the velocity of the LS mo-
tion has an arbitrary direction. The self-induced motion of the LS is associated with
a pitchfork bifurcation where the stationary LS loses stability and a branch of stable
LSs uniformly moving with the velocity v = |v| bifurcates from the stationary LS
branch. The bifurcation point can be obtained from the first order expansion of the
uniformly moving LS in power series of the small velocity v. Close to the pitchfork
bifurcation point this expansion reads:

E(x − vt, y) = E0(x − vt, y) + vE1(x − vt, y) + ... (4.18)

Z(x − vt, y) = Z0(x − vt, y) + vZ1(x − vt, y) + ..., (4.19)

where without the loss of generality we assume that the LS moves along the x-axis
on the (x, y)-plane. Here E0(x, y) = X0(x, y)+ iY0(x, y) and Z0(x, y) describes the
stationary axially symmetric LS profile, which corresponds to the time-independent
solution of Eqs. (4.1) and (4.2) with τ = 0. Although formally this solution depends
on the feedback parameters ζ and φ we neglect this dependence assuming that the
feedback rate is sufficiently small, ζ ≪ 1. Substituting this expansion into Eqs. (4.1)
and (4.2) and collecting the first order terms in small parameter v we obtain:

L

 ℜE1
ℑE1
Z1

 =

 ℜ[∂xE0(1 − ζτeiφ)]
ℑ[∂xE0(1 − ζτeiφ)]

γ−1∂xZ0

 (4.20)

where the linear operator L is given by
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L =

 µ − 2C(Z0 − 1) ∇2 − θ − 2C α (Z0 − 1) −2C(X0 + αY0)
−∇2 + θ + 2C α (Z0 − 1) µ − 2C(Z0 − 1) −2C(Y0 − αX0)

2(Z0 − 1)X0 2(Z0 − 1)Y0 −d∇2 + 1 + |E0|2

 .

By applying the solvability condition to the right hand side of Eq. (3), we obtain the
drift instability threshold

ζτ =
1 + γ−1(b/c)√

1 + (a/c)2 cos[φ + arctan (a/c)]
(4.21)

with

a = ⟨ψ†
1 , ψ2⟩ − ⟨ψ†

2 , ψ1⟩, b = ⟨ψ†
3 , ψ3⟩, c = ⟨ψ†

1 , ψ1⟩+ ⟨ψ†
2 , ψ2⟩. (4.22)

Here
ψ = (ψ1, ψ2, ψ3)

T = ∂x (X0, Y0, Z0)
T (4.23)

is a translational neutral mode of the operator L, Lψ = 0, while ψ† =
(
ψ†

1 , ψ†
2 , ψ†

3
)T

is the corresponding solution of the homogeneous adjoint problem L†ψ† = 0. The
scalar product ⟨·⟩ is defined as ⟨ψ†

j , ψk⟩ =
∫ +∞
−∞ ψ†

j ψk dxdy. To estimate the coef-

ficients a and b we have calculated the function ψ† numerically using the relaxation
method in two transverse dimensions, (x, y). The results of these calculations are
shown in Fig. 4.14 together with the axially symmetric profile E0 of the stationary
LS. It is seen from this figure that similarly to the neutral mode ψ defined by (4.23)
the neutral mode ψ† of the adjoint operator L† is an even function of the coordinate
y and an odd function of the coordinate x, which is parallel to the LS direction of
motion.

The dependence of the critical feedback rate ζ corresponding to the drift instabil-
ity threshold defined by Eq. (4.21) on the feedback phase φ and carrier relaxation
rate γ is illustrated by Fig. 4.15. In this figure the curves labeled by different num-
bers correspond to different values of γ. Considering the fact that the feedback in
Eq. (4.1) is introduced with the minus sign, we see that the drift instability takes place
only for those feedback phases when the interference between the cavity field and
the feedback field is destructive, i.e. when cos function in the denominator of the
right hand side of Eq. (4.21) is positive. On the contrary, when this interference is
constructive the feedback has a stabilizing effect on the LS. Furthermore, the slower
is the carrier relaxation rate, the higher is the drift instability threshold. Since the sta-
tionary LS solution does not depend on the carrier relaxation rate γ, the coefficients
a and b in the threshold condition (4.21) are also independent of γ. Therefore, (4.21)
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Fig. 4.14: Left panels: real and imaginary parts of the stationary structure profile, X0 = ℜE0
(a) Y0 = ℑE0 (c). Right panels: real and imaginary parts of the neutral mode of the
adjoint operator L†, ψ†

1 = ℜψ† (b) and ψ†
2 = ℑψ† (d). Parameters values: η = 0.0,

θ = −2.0, C = 0.45, α = 5.0, γ = 0.05, τ = 100, d = 0.052, Ei = 0.8, I = 2.

gives an explicit dependence of the threshold feedback rate on the carrier relaxation
rate. In particular, in the limit of very fast carrier response, γ ≫ 1, and zero feed-
back phase, φ = 0, we recover from (4.21) the threshold condition ζτ = 1 which
was obtained earlier for the LS drift instability induced by a delayed feedback in the
real Swift-Hohenberg equation [66]. Note that at γ → ∞, a ̸= 0, and φ = − arctan a
the critical feedback rate appears to be smaller than that obtained for the real Swift-
Hohenberg equation, ζτ = (1 + a2)

−1/2
< 1.

As it was demonstrated above, the bifurcation threshold responsible for self-
induced drift of LS in the VCSEL transverse section is obtained by expanding the
slowly moving localized solution in the small velocity v, substituting this expansion
into the model equations (4.1),(4.2), and matching the first order terms in v. In or-
der to describe the slow evolution of the LS velocity slightly above the bifurcation
threshold, one needs to perform a similar procedure with E = E0(x − x0(t), y) +
∑3

k=1 ϵkEk(x− x0(t), y, t)+ ... and Z = Z0(x− x0(t), y)+∑3
k=1 ϵkZk(x− x0(t), y, t)+
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ζ

Fig. 4.15: Critical value of the feedback rate ζ corresponding to the drift bifurcation vs feed-
back phase φ calculated for different values of the carrier relaxation rate γ. The
values of the parameter γ are shown in the figure. Other parameters are the same
as in Fig. 4.14.

..., where dx/dt = v(t) = O(ϵ), dv/dt = O(ϵ3) and ϵ is a small parameter charac-
terizing the distance from the bifurcation point. Then, omitting detailed calculations,
in the third order in ϵ, we obtain the normal form equation for the LS velocity:

p
2

dv
dt

= v(δζq − ζτ2rv2), (4.24)

where δζ is the deviation of the feedback rate from the bifurcation point. The coeffi-
cients q, p, and r are given by q = a sin φ + c cos φ, p = q + b, and r = f sin φ +
g cos φ +O(τ−1), respectively. Here a, b, and c are defined by Eq. (4.22) and f =
⟨ψ†

1 , ∂xxxY0⟩ − ⟨ψ†
2 , ∂xxxX0⟩, h = ⟨ψ†

3 , ∂xxxZ0⟩, g = ⟨ψ†
1 , ∂xxxX0⟩+ ⟨ψ†

2 , ∂xxxY0⟩.
The stationary LS velocity above the drift instability threshold is obtained by calculat-
ing the nontrivial steady state of Eq. (4.24),

v =
√

δζQ, (4.25)

Q =
1
τ

√
q
rζ

. (4.26)
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The coefficient Q determines how fast the LS velocity increases with the square root
of the deviation from the critical feedback rate. The dependence of this coefficient
on the feedback phase is illustrated by Fig. 4.16.

Fig. 4.16: Coefficient Q describing the growth rate of the LS velocity with the square root of
the deviation from the critical feedback rate. The values of the parameter γ are
shown in the figure. Other parameters are the same as in Fig. 4.14.

4.4 CONCLUSION

In this chapter, we considered a VCSEL submitted to optical injection and delayed
optical feedback. To mathematically describe the evolution of such a system, we
added a delayed term in the mean-field model, as well as in the reduced model, the
modified Swift-Hohenberg equation with a delay term.

In the framework of the modified Swift-Hohenberg equation with a delay term, we
performed a linear stability analysis and investigated the Turing pattern formation in
the presence of delay, in the monostable and bistable regimes. Numerical simula-
tions have shown the presence of stationary localized structures, as well as moving
localized structures. The motion of those localized structures is then linked with a
drift instability. The threshold for this instability, and the speed at which it occurs are
derived. These quantities depend only on the feedback parameters.
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In the more general framework of the VCSEL mean field model, we also numer-
ically and theoretically investigated the motion of localized structures. The motion
threshold and speed of the localized structures are found to depend not only on the
feedback parameters, but also on the decay rate for charge carriers, as well as on
the phase of the optical feedback. We provide analytical expressions for both the
threshold of localized structures drfit instability, and the velocity of this motion.
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Localized structures can be spatial, like the ones we described in this thesis so far.
Their stabilization mechanisms notably involve diffraction, to couple the spatiotem-
poral evolution of adjacent points of the plane transverse to the propagation axis
together. In the paraxial approximation, the diffraction is modelled by the term i∇2

⊥E
in the models we have used so far.

Localized structures can also be generated in one dimensional systems (such as
an optical fiber). In that configuration, the transport process that allows the presence
of a localized dissipative structure, and plays the role of diffraction, is chromatic dis-
persion. To describe chromatic dispersion in the reference frame of a pulse, moving
at the group velocity, a term ∂2E/∂τ2 is introduced. The similarities in the mathemat-
ical descriptions of diffraction and chromatic dispersion allow to describe temporal
and spatial localized structures in a very similar fashion. However, we have to keep in
mind that the objects described by these models are very different: a spatial soliton
is a stationary bright peak in the field transverse to the propagation of light, whereas
a temporal soliton is a pulse that propagates inside an optical fiber.

In this chapter, we first introduce two different models. The first one describes the
polarization properties of a temporal localized structure in a low birefringence fiber,
whereas the second describes the effect of high order dispersion effects on temporal
localized structures generated in a Photonic Crystal Fiber (PCF) cavity, tailored for
minimizing second order dispersion. These two models are a generalization of the
well known Lugiato-Lefever model [10]. This model will be presented in section 5.1,
alongside with the adaptations that have been performed to describe polarization
effects, and the influence of high order dispersion. The model derived for study of
polarization effects will be the subject of section 5.2, whereas section 5.3 will be
devoted to the study of the influence of higher orders of dispersion.
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5.1 INTRODUCTION

High-finesse cavities filled with a Kerr medium and driven by a coherent injected
beam (see Fig. 5.1a) are described in the mean field approach by the well known
Lugiato-Lefever equation

∂E
∂t

= S − (α + iδ)E +
i
2

(
∂2E
∂x2 +

∂2E
∂y2

)
+ i|E|2E. (5.1)

In this equation, E(t, x, y) is the normalized slowly varying envelope for the electric
field inside the cavity. The injected field amplitude S is a positive defined quantity,
in order to set the origin of the phase.The time variable t corresponds to the slow
evolution of E over successive round-trips. α is the cavity losses, δ is the frequency
detuning between optical injection and cavity. x and y are the space coordinates in
the plane transverse to the propagation of light.

It has been shown in [73] that the Lugiato-Lefever equation 5.1can also be ap-
plied to a fiber cavity, as described in Fig. 5.1b). In that case, the term i

2

(
∂2E
∂x2 + ∂2E

∂y2

)
is replaced by a single coordinate τ, a fast-time describing the intracavity field en-
velope evolution within the fiber cavity. It is worth remarking that, in that case, one
cannot speak of Turing instability to describe the patterns arising in numerical simu-
lations of Eq. 5.1. Indeed, Eq. 5.1 is written for optical fibers in the reference frame
moving with the group velocity. What will appear as a stable pattern in the numeri-
cal simulations corresponds physically to a train of pulses. We hence describe this
phenomenon as a Modulation Instability (MI), and use the pulsation ω instead of the
wavevector k.

It is a classic model for the analysis of several important physical situations, in-
cluding all fiber cavities [73], ring cavity filled with left-handed materials [74], and the
generation of optical frequency combs in microresonators [75, 76]. Equation 5.1 has
been analytically and numerically proved to be able to host localized structures in
one and two dimensions [13]. Localized structures from this model have also been
found experimentally in one dimension [16].

In the first part of this chapter, we discuss the polarization properties of localized
structures generated in a low birefringence fiber. Before doing so, it is worth remark-
ing that a study of dissipative structures formed in the transverse plane of a spatially
extended cavity described by a variant of eq. 5.1 has been performed in [40]. In this
article, the authors modified eq. 5.1, to describe a birefringent Kerr medium. To take
into account this birefringence, and study the polarization patterns arising in such a
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Fig. 5.1: Schematic setup of (a) a spatially extended ring cavity filled with a Kerr medium and
submitted to optical injection, and (b) a fiber ring cavity submitted to optical injection.
S is the optical injection strength, and E is the slowly varying envelope of the electric
field circulating in both configurations. R is the reflectivity of the beamsplitter BS at
the entrance of the cavity, T is its transmittivity.

cavity, an interplay between the different components of the electric field needs to
be added in the description of the system. This yields [40]

∂E±
∂t

= S± + iE±(A|E±|2 + (A + B)|E∓|2)− (1 + iθ)E± + ia∇2
⊥E±. (5.2)

In these equations, the slowly varying electric field envelope and the external optical
injection have been expressed in terms of their circularly polarized components E±
and S±. Losses have been normalized to unity. A and B are parameters related
to the susceptibility tensor of the Kerr medium. These equations have been derived
for propagation in a free space ring cavity, that is described in Fig. 5.1a). Such a
model cannot be adapted to highly birefringent fibers. Indeed, in such systems, the
time spent in the cavity depends on the polarization of the electric field. The different
polarization components hence cannot be described using the same τ limits, and
the same time scales.

We can however consider weakly birefringent fibers, in which this time difference
can be neglected. The interplay between the different polarization components then
takes place, because of the cross phase modulation. Another effect that one needs
to include to properly describe polarization effects in optical fibers is four-wave mix-
ing. However, for the sake of simplicity, and to keep the general form of Eq. 5.1,
we neglect this effect. This allows, by changing the chromatic dispersion term into
diffraction, to describe two-dimensional localized structures in birefringent materials
(see the similarities with Eqs. 5.2).
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In that restricted framework, the equations describing the spatio-temporal evolu-
tion of the electric field slowly varying envelopes are

∂Ex

∂t
= S cos(Ψ)− (1 + iθx)Ex + i

(
|Ex|2 +

2|Ey|2

3

)
Ex + iβ2

∂2Ex

∂τ2 , (5.3)

∂Ey

∂t
= S sin(Ψ)− (1 + iθy)Ey + i

(
|Ey|2 +

2|Ex|2
3

)
Ey + iβ2

∂2Ey

∂τ2 . (5.4)

Here, Ex and Ey are the parts of the slowly varying electric field envelope polar-
ized in the horizontal and vertical plane, respectively. The holding beam S is real,
and positive to fix the origin of the phase, with Ψ its linear polarization direction with
respect to horizontal. The detunings between the frequency of the holding beam
and the cavity resonances for each polarization direction are θx and θy. The second
order chromatic dispersion coefficient is β2, considered to be the same for horizontal
and vertical polarization directions. The study of this equation set will be the subject
of the next section.

In the second part of this chapter, we consider a Photonic Crystal Fiber (PCF)
cavity. The term "crystal" is used to describe such fibers because of the periodic
arrangement of its transverse section. This periodicity allows notably single mode
propagation, among a lot of other possibilities [77]. In particular, one can tune the
chromatic dispersion around a certain wavelength, to reduce it significantly.We limit
our analysis to PCF cavities operated close to the zero dispersion regime. In that
regime, it is necessary to take into account chromatic dispersion of high order.A
development in power series of the chromatic dispersion truncated to order four
yields [78]

∂E
∂t

= S − (1 + i∆)E + i |E|2 E − iB2
∂2E
∂τ2 + B3

∂3E
∂τ3 + iB4

∂4E
∂τ4 . (5.5)

In this equation, Bi denotes the chromatic dispersion coefficient of order i, and ∆ is
the detuning parameter. The study of this system will be the subject of section 5.3
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In order to study the effects of the birefringence on the dynamics of the system, we
first perform a linear stability analysis of Eqs. 5.3-5.4. Homogeneous steady states
(HSS) of these equations are

0 = S cos(Ψ)− (1 + iθx)Ex0 + i

(
|Ex0|2 +

2|Ey0|2

3

)
Ex0, (5.6)

0 = S sin(Ψ)− (1 + iθy)Ey0 + i
(
|Ey0|2 +

2|Ex0|2
3

)
Ey0. (5.7)

The linear stability analysis with respect to small perturbations of the form eλt+iωτ

leads to the characteristic matrix
−1 − λ − 2ℑEx0ℜEx0 A − 4ℑEx0ℜEy0

3 − 4ℑEx0ℑEy0
3

B −1 − λ + 2ℜEx0ℑEx0
4ℜEx0ℜEy0

3
4ℜEx0ℑEy0

3

− 4ℜEx0ℑEy0
3 − 4ℑEx0ℑEy0

3 −(1 + λ + 2ℜEy0ℑEy0) D
4ℜEx0ℜEy0

3
4ℑEx0ℜEy0

3 C F


where A = θx −

(
|Ex0|2 +

2|Ey0|2
3

)
− 2ℑE2

x0 + β2ω2, B = −θx +

(
|Ex0|2 +

2|Ey0|2
3

)
+

2ℜE2
x0 − β2ω2, C = −θy +

(
|Ey0|2 + 2|Ex0|2

3

)
+ 2ℜE2

y0 − β2ω2, D = θy −
(
|Ey0|2 + 2|Ex0|2

3

)
−

2ℑE2
y0 + β2ω2, F = −1 + 2ℜEy0ℑEy0 − λ.

Steady state solutions |Ex0|2 + |Ey0|2 solutions of Eqs. 5.6-5.7 and their stability
are shown in Fig. 5.2 for three different values of the detuning θx. The injection field
S is the bifurcation parameter and the y-axis is the sum of the two components of
the electric field |E|2 = |Ex|2 + |Ey|2. We observe that, when increasing θx, the
width of the bistability between a stable and a MI unstable state (delimited by the
limit points A and B in Fig. 5.2) increases, whereas the bistability between two modu-
lationaly unstable states (delimited by the limit points C and D in Fig. 5.2) decreases.
Furthermore, the bistable regions A-B and C-D move to higher and lower injection
strengths, respectively. These combined effects lead to a coexistence of the stable
state with two different MI unstable states [See Fig. 5.2(c) and S between C and D].
In this range of parameters and depending on the initial conditions, the system will
therefore exhibit either a stable homogeneous state, or a MI pattern corresponding to
the intermediate branch A-D, or a MI pattern corresponding to the higher MI unstable
branch. We are particularly interested by this situation.

In order to have more information on the region of coexistence of a stable state
with two branches of MI unstable states, we map the stability regions in the plane
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Fig. 5.2: Linear stability analysis for different values of θx and with S as the bifurcation pa-
rameter. A and B denote the lower and higher limits of a hysteresis, whereas C
and D denote the lower and higher limits of the other hysteresis. Parameters are
β2 = 1, ψ = π/4, θy = 4.3, θx = 2(a), θx = 2.5(b), and θx = 3(c).
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(S, θx) as shown in Fig. 5.3. The black and blue regions correspond to areas in
which the system admits a stable homogeneous steady state and a modulationaly
unstable state, respectively. The red and green colors stand for regions where two
homogeneous steady states coexist: the red - coexistence of a stable homogeneous
state and a MI unstable state, and green - coexistence of two MI unstable states.
Finally, white represents the coexistence of a stable homogeneous state, and two MI
unstable states.

Note that for the chosen parameters (especially θy = 4.3), the system does not
show any monostable regime. This is expected, as for the Lugiato-Lefever model
that is not discriminated in polarization, the system is bistable for θ >

√
3 [10]. We

observe that the white area is relatively small compared to other regions. Examples
of numerical simulations in this white region are presented in Fig. 5.4. Two different
sets of data are presented in this figure, as a function of their Stokes parmaters,
which are connected to the linearly polarized components Ex and Ey by

S0 = |Ex|2 + |Ey|2, (5.8)

S1 = |Ex|2 − |Ey|2, (5.9)

S2 = E∗
x Ey + ExE∗

y , (5.10)

S3 = i(E∗
x Ey − ExE∗

y). (5.11)

Both simulations sets have been performed with periodic boundary conditions. In
Fig. 5.4a) and b), the Stokes parameters S0 and S1 corresponding to the low energy
pattern are presented. In Fig. 5.4c) and d), the same Stokes parameters for the high
energy pattern are presented.

When a stable state and a MI pattern coexist, it is often possible to generate
localized structure solutions. In the white region, as detailed in Fig. 5.4, there are
two different MI patterns coexisting with a stable state. We hence can expect that the
system can generate two kinds of localized structures for the values of parameters
in the white area.

Indeed, numerical simulations of Eqs. 5.3-5.4 with periodic boundary conditions
in the τ coordinate show evidence of the coexistence of the two possible localized
structure states. An example thereof is given in Fig. 5.5.

The initial condition used in this numerical simulation consits of a homogeneous
background on which two hard perturbations with different polarization properties
have been added, in the vicinity of τ = 8 and τ = 30. As can be seen from Fig. 5.5,
there are three distinct regions in space: around τ = 8 and τ = 30 two localized
structures labelled A and B, and in between the background. The localized structure
labelled A has the higher intensity (S0 parameter) in space, this localized structure
therefore corresponds to the brightest region in space. Next to its maximum value is



96 T E M P O R A L L O C A L I Z E D S T RU C T U R E S I N N O N L I N E A R FI B E R C AV I T I E S

θ
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I

Fig. 5.3: Stability regimes of the homogeneous steady states in the parameter plane (S, θx).
Black color corresponds to region where the system allows a single stable state,
blue to a single MI unstable state, red to the coexistence of a stable state and a
MI unstable state, white to the coexistence of two MI unstable states and gray to
the coexistence of a stable state with two MI unstable states. The map has been
obtained from a linear stability analysis of Eqs. 5.3-5.4. Parameters are the same as
in Fig. 5.2.
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Fig. 5.4: Numerical simulations of Eqs. 5.3-5.4 for S = 2.54, θx = 2.75, β2 = 1, θy = 4.3 and
Ψ = π/4. The τ step has been fixed to 0.2, and the time step has been set to 0.01.
The sets a),b) and c),d) have been obtained for different initial conditions.
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represented its polarization state which is an ellipse. The parameters of this ellipse
have been calculated at the maximum value of S0. Two other ellipses have been
drawn on this graph. The lower (unmarked) one represents the polarization state
of the background whereas B corresponds to the maximum of the second localized
structure. The difference between their polarization states can be evidenced by look-
ing at their Stokes parameters: at its maximum intensity, the localized structure A
has a negative S1 and a positive S2, whereas the localized structure B has a posi-
tive S1 and a negative S2. Both these structures have a large negative S3 (slightly
different between localized structures A and B). This indicates a large right handed
circular component.

We now compare the properties of these localized structures with the ones of
other systems that can also generate different kinds of localized structures. In
Refs. [79, 48], they generate three kinds of localized structures. The first one is
a classical Polarization Locked Vector Soliton (PLVS), as the ones we deal with in
this chapter. The two others are polarization precessing vector localized structures
with a spiral attractor, and a vector localized structure evolving on two semicircles on
the Poincaré sphere. Here, we describe a system able to host two PLVS attractors,
on two Poincaré spheres with different radii. In Refs. [46, 47], the biggest difference
between the different structures that can be hosted in the system is their handed-
nesses. That means, they describe structures that can either be left or right-handed,
with all other ellipse parameters remaining the same. In terms of Stokes parameters,
the different structures they generate have common S0, S1 and S2, and their S3 pa-
rameters differ by their sign while having the same amplitude (with a 5% tolerance).
This is not the case here, as evidenced in the plot of the S3 parameter, which has
a different value for the localized structures A and B, but the same sign. Finally, in
Ref. [80], the different vector localized structures that have been generated are a
PLVS and a Group Velocity Locked Vector Soliton. Here, we predicted existence of
two different PLVS solutions. This is actually a consequence of the simplifications
that have been performed to derive our model: as in the classical Lugiato-Lefever
model [10, 73], our fiber cavity is phase locked to the holding beam, and hence so
are the localized structures.

To conclude, we have investigated a weakly birefringent fiber cavity submitted
to linearly polarized optical pumping. We have shown that there exists a parameter
domain in which two MI branches coexist with a homogeneous steady state. Numeri-
cal simulations of the vectorial LL model have revealed the existence of two localized
structures having different Stokes parameters, i.e. different polarization properties,
each one being associated with a different MI branch.
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Fig. 5.5: Numerical simulation of Eqs. 5.3-5.4, after 500 units of time, expressed as a function
of the Stokes parameters of the output field. On the upper-left plot (S0), localized
structures and the background have been marked with their respective polarization
ellipses. The τ step has been fixed at 0.2, the time step has been fixed to 0.01.
The τ integration has been performed using a second order finite difference method,
whereas the time integration has been performed using a Runge-Kutta method of
order 4. Parameters are S = 2.54, θx = 2.75, β2 = 1, θy = 4.3, and Ψ = π/4.
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5.3 PHOTONIC CRYSTAL FIBER CAVITIES

In this section, we investigate temporal localized structures generated in a dispersion
managed PCF cavity. We first perform a linear stability analysis of Eq. 5.5, that de-
scribes the different stability regimes of this equation. Then, we will place ourselves
in the vicinity of the second modulation instability point, where we perform a weakly
nonlinear stability analysis of this model. Finally, localized structures and clusters
are described in the last part.

5.3.1 Linear stability analysis

The HSSs of Eq. 5.5 describing a photonic crystal fiber cavity in which chromatic
dispersion of order 2 is compensated satisfy

S = [1 + i(∆ − |Es|2)]Es. (5.12)

We perform a linear stability analysis of the HSS with respect to finite frequency
perturbations of the form exp(λt + iΩτ), this analysis yields the eigenvalues

λ = −1 + iB3Ω3 ±
√

I2
s − (−∆ + 2Is + B2Ω2 + B4Ω4)2 (5.13)

where Is = |Es|2 corresponds to the uniform intensity background of light. The sys-
tem becomes unstable when one of these two eigenvalues becomes zero at a finite
frequency. The system exhibits a modulational instability between the first threshold
Ic1 = 1, and the second threshold Ic2 = [2κ +

√
κ2 − 3]/3 with κ = B2

2/(4B4) + ∆.
It has been shown in [78, 81] that the fourth-order dispersion limits the region of
modulation instability between these two intensity levels. Indeed, when B4 = 0, the
second threshold does not exist. We note also frequency degeneracy Ω2

l and Ω2
u at

the first instability threshold where Ω2
l,u = [−B2 ±

√
B2

2 + 4B4(∆ − 2)]/(2B4). At

the second threshold Ic2, a new critical frequency appears Ω2 = −B2/2B4.
In what follows, we remove the frequency degeneracy for the first threshold by

choosing B2, B4 and ∆ such as B2
2 + 4(∆ − 2)B4 = 0. In this case, the MI zone

is limited between two thresholds, the first at I1c = 1 and the second will be at
I2c = 5/3, while the destabilized frequencies in both thresholds will be equal to
Ω2

c = Ω2
l = Ω2

u = −B2/(2B4). Remarkably, the MI can occur in the PCF cavity
only if the signs of B2 and B4 are opposite.
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5.3.2 Weakly nonlinear analysis

We shall describe the nonlinear evolution of the system in the vicinity of the second
instability point I2c = 5/3. The small-amplitude inhomogeneous stationary solu-
tions, i.e., solutions that are independent of slow t and fast τ times can be calculated
analytically by employing the standard theory [82, 83]. For this purpose, we first
decompose the electric field into its real and imaginary parts: E = x1 + ix2 and in-
troduce the excess variables as (x1(t, τ), x2(t, τ)) = (x1s, x2s)− (U(t, τ), V(t, τ))
with x1s and x2s are, respectively, the real and the imaginary parts of the homoge-
neous solutions independent of t and τ. The homogeneous solutions of Eq. (1) obey
to

−x1s + S − x2s(x2
1s + x2

2s − ∆) = 0 , (5.14)

−x2s + x1s(x2
1s + x2

2s − ∆) = 0 . (5.15)

Next, we introduce a small parameter ϵ ≪ 1 which describes the distance from the
critical modulational point. We expand all variables around their critical values at the
bifurcation point:

S = S2c + ϵµ1 + ϵ2µ2 + · · · (5.16)

(U, V) = ϵ(U0, V0) + ϵ2(U1, V1) + ϵ3(U2, V2) + · · · (5.17)

(x1s, x2s) = (a0, b0) + ϵ(a1, b1) + ϵ2(a2, b2) + · · · (5.18)

We expand the time as

∂

∂t
=

∂

∂T0
+ ϵ

∂

∂T1
+ ϵ2 ∂

∂T2
+ · · · (5.19)

At the leading order in ϵ we find that a0 = b0 = µ1 = 0. At this order, near the critical
point we can approximate soltuions by a linear superposition of the corresponding
critical frequencies Ωc and Qc

(U0, V0) =

(
1,

ρ + 3
1 − 3ρ

)
W̃ exp i(QcT0 + Ωcτ) + c.c. (5.20)

where c.c. denotes the complex conjugate and ρ = 5/3−∆. The complex amplitude
W̃ associated with the frequency Ωc does not depend on the time τ, it depends only
on the time T0. The quantities ai, bi, Ui, and Vi can be calculated by inserting 5.16-
5.19 into 5.5, 5.14, and 5.15 and equating terms with the same powers of ϵ. At order
ϵ2, the solvavility condition imposes that a1 = b1 = µ1 = 0. The application of
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Fig. 5.6: The threshold associated with the transition from super- to sub-critical modulational
instability is plotted (a) as a function of the detuning parameter ∆ for B3 = 0; (b) in
the plane (B3, ∆). Others parameters are B4 = 0.5, and B2 =

√
4B4(2 − ∆)

the solvability condition to the order ϵ3 brings an amplitude equation for the unstable
mode. In terms of the unscaled amplitudes (W=ϵ W̃+ · · · ), we obtain

∂W
∂t

= µW + ( fr + i fi)W|W|2 (5.21)

Where

µ =
S − S2c

(3ρ + 1))(ρ + 3)Sc
with S2c =

√
5
3

√
1 + ρ2 (5.22)

fr =
ac + bd
c2 + d2 and fi =

bc − ad
c2 + d2 (5.23)
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where the coefficients a, b, c and d are expressed in term of the detuning parameter
∆ = 5/3 − ρ

a = −4(∆ − 2)(α1 + α2) + α3

α1 = 59049∆7 − 798255∆6 + 4417983∆5 − 13345641∆4

α2 = 24735807∆3 − 29605896∆2 + 21969258∆ − 7708940

α3 = 600(486∆6 − 5508∆5 + 24435∆4 − 57654∆3 + 82686∆2 − 73156∆ + 30792)B3Ω3

b = −60(3∆ − 4)(243∆5 − 2268∆4 + 7398∆3 − 11412∆2 + 11040∆ − 7304)B3Ω3

c = 3(3∆2 − 20∆ + 28)(3∆ − 4)2c1

c1 = (9∆2 − 30∆ + 34)2(100(B3Ω3)2 − 81∆2 + 348∆ − 372)

d = −60(∆ − 2)(3∆ − 14)(3∆ − 4)2(9∆2 − 30∆ + 34)2B3Ω3

When fr(∆) < 0, the modulational instability is subcritical. In this case, it is neces-
sary to retain the fifth order in ϵ, since equation ( 5.21) loses its meaning. Thus, if
fr(∆) > 0, the modulational instability is supercritical, leading to stable small ampli-
tude temporal structures. The parameter regime where the bifurcation is supercritical
is plotted in Fig. 5.6a. The transition from super- to sub-critical modulationnal insta-
bility is explicitly given by fr = 0. This condition corresponds to the threshold of the
emergence of temporal cavity solitons that we shall discuss is the next section. The
dependence of the threshold as a function of the third order dispersion coefficient
and of the detuning parameter is shown in Fig. 5.6b. Note, however, that the third
order dispersion affects the threshold of the modulational instability as well. In the
supercritical case where fr(∆) > 0, we seek for solutions of Eq. 5.21 in the form of
W = A exp (iRt). Inserting this ansatz in Eq. 5.21. The stationary solutions are

As = 0, As = ±
√

−µ

fr
and R =

µ fi
fr

(5.24)

The third order dispersion breaks the symmetry (τ,−τ). This breaking symmetry
induces a motion of temporal structures and the linear and nonlinear corrections to
their velocity are

v = vl + vnl with vl =
∂λi
∂Ω

and vnl =
∂R
∂Ω

(5.25)

In terms of the dynamical parameters the linear and the nonlinear velocities are

vl = 3B3Ω2 and vnl =
µ

fr

∂ fi
∂Ω

(5.26)
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Fig. 5.7: Linear velocity of the periodic structure and its nonlinear correction with respect to B3.
Dashed curve denotes the linear velocity. The velocity with its nonlinear correction
(Eq. 5.25) is plotted by a solid line. The velocity obtained from direct numerical
simulations of Eq. (2) are indicated by circles. Parameters are S = 1.4307, ϵ2 =
0.006, ∆ = 1.2, B4 = 0.1, and B2 = −0.5657.
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The velocity as a function of the third order dispersion coefficient (Eq. 5.26) is plotted
in Fig. 5.7. The velocity of moving temporal structures calculated through numerical
simulations of the model Eq. 5.5 is in good agreement with the one estimated from
the above analysis.

5.3.3 Moving localized structures

In this section, we are interested in the situation where the bifurcation towards mod-
ulational instability appears subcritically. In the absence of the third order disper-
sion, the typical bifurcation diagram is shown in Fig. 5.8. In the domain, denoted
by L, the system exhibits a coexistence between two stable solutions: the homoge-
neous steady state (uniform background) and the temporal train of periodic pulses
that emerges from subcritical modulational instability. Temporal dark cavity solitons,
connecting the HSS and a branch of periodic solutions, are found in a well-defined
region of parameters called a pinning zone denoted L in Fig. 5.8. It has been shown
that temporal cavity solitons exhibit a homoclinic snaking type of bifurcation [84]. De-
pending on the initial condition used, a single dip, or multiple dips in the intensity
profile can be generated in direct numerical simulations of Eq. 5.5. Examples of sta-
tionary temporal dark cavity solitons involving one to six dips are shown in Fig. 5.9.
They are obtained from the same values of parameters and they are characterized
by an oscillating exponentially decaying tails.

Let us now investigate the effect of third order dispersion on the dark cavity
solitons. As we have already mentioned, this effect breaks the reflexion symme-
try (τ → −τ) of temporal cavity solitons emerging from subcritical bifurcation point.
This symmetry breaking induces a drift of the temporal cavity solitons with a constant
velocity. Examples of drifiting temporal dark cavity solitons are shown in τ-t maps of
the Fig. 5.10.

5.4 CONCLUSIONS

In this chapter, we have investigated nonlinear fiber resonators, to find phenomena
similar to the ones developed in other chapters.

A link with chapter 3 has been made in the case of a weakly birefringent fiber. We
derived a model describing the spatio-temporal evolution of light in the approxima-
tions of a good cavity, dispersion length much longer than the cavity length, and by
neglecting four-wave mixing. In that context, we perfromed a linear stability analysis
of the homogeneous steady states. This analysis revealed a region in which a homo-
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Fig. 5.8: Bifurcation diagram associated with the temporal train of periodic pulses that
emerges from subcritical modulational instability. Parameter are B4 = 0.1, B2 =
−0.3347, B3 = 0, ∆ = 1.72, The full (dashed) curve indicates stable (unstable) so-
lutions. The open circles represent the numerical values of the minimum intensity of
the temporal train of periodic pulses.
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Fig. 5.9: Stationary temporal dark cavity solitons with up to 6 dips. (a)-(f) corresponding to
1-6 dips or holes in the insensity profiles, respectively. Parameters are the same as
figure 5.7 with B3 = 0.
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Fig. 5.10: Moving temporal dark cavity solitons with up to 4 dips. (a)-(d) are the intensity
profiles in the PCF cavity at t = 0, whereas (e)-(h) are space-time maps in the (t,τ)
plane. Parameters are the same as figure 5.7 with B3 = 0.1.

geneous steady state coexists with two different modulation instabilities. Numerical
simulations in this parameter range revealed a bistability between two different pat-
terns. Numerical simulations also revealed the possibility of generating two different
kinds of localized structures in that system.

A motion of localized structures due to a symmetry breaking has been developed
in the second part of this chapter. Note however that the symmetry breaking phe-
nomenon is fundamentally different to the one developed in chapter 4, as the symme-
try breaking in that system happens in the space variable, whereas the one studied
in chapter 4 breaks the time symmetry. We investigated this symmetry breaking
in the vicinity of the second modulational instability point, where we computed the
velocity of localized structures induced by the aforementioned symmetry breaking,
in the supercritical regime. When the modulational instability appears subcritically,
we found moving temporal dark solitons that can be either isolated or organized in
clusters.
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6.1 CONCLUSIONS

In chapter 2, we have built an experimental setup, and we have investigated the for-
mation of two-dimensional localized structures in the transverse section of a 80µm
diameter VCSEL. Bistability corresponding to spontaneous appearance and disap-
pearing of a localized structure have been observed, as a function of optical injection
power, and as a function of VCSEL current. Oscillating tails of the localized struc-
tures have also been observed. Spontaneous appearance and disappearance of
two localized structures have also been observed, which is a manifestation of multi-
stability.

All of these measurements have been performed while the linearly polarized op-
tical injection had its direction matching the one in which the VCSEL spontaneously
lases in while being pumped close to its current threshold.

Considering a model for the specific case of a VCSEL injection-locked in polariza-
tion and frequency in the vicinity of the nascent bistability, we have carried out nonlin-
ear perturbative analysis and obtained a modified Swift-Hohenberg equation. Based
on this equation, we have shown that, in one transverse dimension, stationary-cavity
solitons exhibit a clustering behavior in the pinning range of parameters where spa-
tially homogeneous and periodic solutions are both linearly stable. In this range, we
have constructed a snaking bifurcation diagram associated with localized structures
having an odd, or an even number of peaks.

In chapter 3, we have extended our experimental setup for generation and char-
acterization of vector localized structures in the transverse section of a broad area
VCSEL. Bistability corresponding to the spontaneous appearance and disappear-
ance of a localized structure has been observed, as a function of optical injection
power. The Stokes parameters of these localized structures have been measured,
for orientations of the optical injection linear polarization varying in a 90◦ span. This
analysis has revealed that localized structures acquired ellipticity. These structures
hence can be classified as vector localized structures.

A model for describing the polarization dynamics of localized structures in a
broad area VCSEL has been implemented: the VCSEL spin-flip model. Based on
this model, we have performed a linear stability analysis. That is, we have investi-
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gated the dependance of the homogeneous steady states of the system and their
linear stability as a function of optical injection strength EI , and of the frequency de-
tuning between optical injection and the VCSEL frequency ∆ω. This linear stability
analysis has revealed a bistable region of coexistence between a Turing unstable
branch, and a homogeneous stable branch. Localized structures have been numer-
ically found in this regime. Linear stability analysis of the VCSEL spin-flip model in
the plane optical injection strength-frequency detuning between optical injection and
VCSEL cavity has led to the discovery of a tristable region.

Numerical simulations of the VCSEL spin-flip model have been compared with
experimental data. There is a good agreement between numerical and experimental
data. A quite large circularly polarized component in the polarization state of local-
ized structures, described by the s3 parameter, has been both measured and com-
puted to be as high as s3 ≈ 0.2. Using localized structures in broad-area VCSELs
that can be switched on and off independently as pixels for information processing
[25] constitutes a bitmap. Considering the Stokes parameters of the vector localized
structures demonstrated here, one would potentially create a colormap instead of a
bitmap, i.e. each pixel contains information in a 3-parameter space (s1, s2, s3) that
easily can be translated into a color code. In such a way, the density of information
can be dramatically increased.

In chapter 4, we have considered a VCSEL submitted to optical injection and
delayed optical feedback. To mathematically describe the evolution of such a system,
we have added a delayed term in the mean-field model, as well as in the reduced
model, the modified Swift-Hohenberg equation with a delay term.

In the framework of the modified Swift-Hohenberg equation with a delay term,
we have performed a linear stability analysis and investigated the Turing pattern for-
mation in the presence of delay, in the monostable and bistable regimes. Numerical
simulations have shown the presence of stationary localized structures, as well as
moving localized structures. The motion of those localized structures is then linked
with a drift instability. The threshold for this instability, and the speed at which it
occurs are derived. These quantities depend only on the feedback parameters.

In the more general framework of the VCSEL mean field model, we also numer-
ically and theoretically investigated the motion of localized structures. The motion
threshold and speed of the localized structures are found to depend not only on the
feedback parameters, but also on the decay rate for charge carriers, as well as on
the phase of the optical feedback. We provide analytical expressions for both the
threshold of localized structures drift instability, and the velocity of this motion.

Finally, in chapter 5, we have investigated nonlinear fiber resonators, to find phe-
nomena similar to the ones developed in other chapters. A link with chapter 3 has
been made in the case of a lowly birefringent fiber. We have derived a model de-
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scribing the spatio-temporal evolution of light in the approximations of a good cavity,
dispersion length much longer than the cavity length, and by neglecting four-wave
mixing. In that context, we have performed a linear stability analysis of the homo-
geneous steady states. This analysis has revealed a region in which a homoge-
neous steady state coexists with two different modulation instabilities. Numerical
simulations in this parameter range have revealed a bistability between two differ-
ent patterns, as well as the possibility of generating two different kinds of localized
structures in that system.

A motion of localized structures due to a symmetry breaking has been devel-
oped in the second part of this chapter. Note however that the symmetry breaking
phenomenon is fundamentally different to the one developed in chapter 4, as the
symmetry breaking in that system happens in the space variable, whereas the one
studied in chapter 4 breaks the time symmetry. We have investigated this symmetry
breaking in the vicinity of the second modulational instability point, where we have
computed the velocity of localized structures induced by the aforementioned symme-
try breaking, in the supercritical regime. When the modulational instability appears
subcritically, we have found moving temporal dark solitons that can be either isolated
or organized in clusters.

6.2 PERSPECTIVES

6.2.1 Polarization properties of localized structures in VCSELs

Under appropriate conditions, polarization represents a degree of freedom that can
be exploited in order to create new types of localized structures. The study of tempo-
ral localized structures in a low birefringence fiber in chapter 5 has been performed
in that spirit. Extensive mappings of the spin-flip VCSEL model are currently under
investigations, to find tristable regimes suitable for localized structure generation of
different types, qualitatively similar to the temporal ones described in the case of a
low birefringence fiber.

This linear stability analysis has also suggested the presence of dark localized
structures in the framework of the VCSEL spin-flip model. Their numerical, analytical,
and numerical demonstration would be of considerable interest. Indeed, to the best
of our knowledge, dark localized structures have never been observed in a spatially
extended system.
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6.2.2 Delay-induced motion of transverse localized structures

The motion of localized structures described in chapter 4 is currently under experi-
mental investigation. Promising results have already been obtained, even though no
linear motion of localized structures has been observed so far. Instead of being set
into linear motion, the localized structures submitted to an optical delayed feedback
begin to oscillate around the place they have been generated at. This phenomenon
is currently under theoretical investigations. A promising lead for explaining this phe-
nomenon consists of considering the localized structure as being trapped in a defect
at the surface of the emission surface of the VCSEL. This defect can be modelled as
a harmonic potential, in which the structure can move the very same way a pendulum
does around its equilibrium position.
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